. 24/7 Space News .
CHIP TECH
Special-purpose computer that may someday save us billions
by Staff Writers
Stanford, UK (SPX) Nov 02, 2016


Post-doctoral scholar Peter McMahon, left, and visiting researcher Alireza Marandi examine a prototype of a new type of light-based computer. Image courtesy L.A. Cicero. For a larger version of this image please go here.

The processing power of standard computers is likely to reach its maximum in the next 10 to 25 years. Even at this maximum power, traditional computers won't be able to handle a particular class of problem that involves combining variables to come up with many possible answers, and looking for the best solution.

Now, an entirely new type of computer that blends optical and electrical processing, reported Oct. 20 in the journal Science, could get around this impending processing constraint and solve those problems. If it can be scaled up, this non-traditional computer could save costs by finding more optimal solutions to problems that have an incredibly high number of possible solutions.

"This is a machine that's in a sense the first in its class, and the idea is that it opens up a sub-field of research in the area of non-traditional computing machines," said Peter McMahon, postdoctoral scholar in applied physics and co-author of the paper.

"There are many, many questions that this development raises and we expect that over the next few years, several groups are going to be investigating this class of machine and looking into how this approach will pan out."

The traveling salesman problem
There is a special type of problem - called a combinatorial optimization problem - that traditional computers find difficult to solve, even approximately. An example is what's known as the "traveling salesman" problem, wherein a salesman has to visit a specific set of cities, each only once, and return to the first city, and the salesman wants to take the most efficient route possible.

This problem may seem simple but the number of possible routes increases extremely rapidly as cities are added, and this underlies why the problem is difficult to solve.

"Those problems are challenging for standard computers, even supercomputers, because as the size grows, at some point, it takes the age of the universe to search through all the possible solutions," said Alireza Marandi, a former postdoctoral scholar at Stanford and co-author of the study. "This is true even with a supercomputer because the growth in possibilities is so fast."

It may be tempting to simply give up on the traveling salesman, but solving such hard optimization problems could have enormous impact in a wide range of areas. Examples include finding the optimal path for delivery trucks, minimizing interference in wireless networks, and determining how proteins fold.

Even small improvements in some of these areas could result in massive monetary savings, which is why some scientists have spent their careers creating algorithms that produce very good approximate solutions to this type of problem.

An Ising machine
The Stanford team has built what's called an Ising machine, named for a mathematical model of magnetism. The machine acts like a reprogrammable network of artificial magnets where each magnet only points up or down and, like a real magnetic system, it is expected to tend toward operating at low energy.

The theory is that, if the connections among a network of magnets can be programmed to represent the problem at hand, once they settle on the optimal, low-energy directions they should face, the solution can be derived from their final state. In the case of the traveling salesman, each artificial magnet in the Ising machine represents the position of a city in a particular path.

Rather than using magnets on a grid, the Stanford team used a special kind of laser system, known as a degenerate optical parametric oscillator, that, when turned on, will represent an upward- or downward-pointing "spin."

Pulses of the laser represent a city's position in a path the salesman could take. In an earlier version of this machine (published two years ago), the team members extracted a small portion of each pulse, delayed it and added a controlled amount of that portion to the subsequent pulses.

In traveling salesman terms, this is how they program the machine with the connections and distances between the cities. The pulse-to-pulse couplings constitute the programming of the problem. Then the machine is turned on to try to find a solution, which can be obtained by measuring the final output phases of the pulses.

The problem in this previous approach was connecting large numbers of pulses in arbitrarily complex ways. It was doable but required an added controllable optical delay for each pulse, which was costly and difficult to implement.

Scaling up
The latest Stanford Ising machine shows that a drastically more affordable and practical version could be made by replacing the controllable optical delays with a digital electronic circuit. The circuit emulates the optical connections among the pulses in order to program the problem and the laser system still solves it.

Nearly all of the materials used to make this machine are off-the-shelf elements that are already used for telecommunications. That, in combination with the simplicity of the programming, makes it easy to scale up. Stanford's machine is currently able to solve 100-variable problems with any arbitrary set of connections between variables, and it has been tested on thousands of scenarios.

A group at NTT in Japan that consulted with Stanford's team has also created an independent version of the machine; its study has been published alongside Stanford's by Science. For now, the Ising machine still falls short of beating the processing power of traditional digital computers when it comes to combinatorial optimization. But it is gaining ground fast and the researchers are looking forward to seeing what other work will be possible based on this breakthrough.

"I think it's an exciting avenue of exploration for finding alternative computers. It can get us closer to more efficient ways of tackling some of the most daunting computational problems we have," said Marandi. "So far, we've made a laser-based computer that can target some of these problems, and we have already shown some promising results."

Additional authors of the paper are Ryan Hamerly, Carsten Langrock, Robert L. Byer, M. M. Fejer, Hideo Mabuchi, and Yoshihisa Yamamoto of Stanford University. Researchers from the National Institute of Informatics (Japan), University of Tokyo, NTT Basic Research Laboratories, and the ImPACT Program were also co-authors.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Scientists develop a semiconductor nanocomposite material that moves in response to light
Worcester MA (SPX) Nov 03, 2016
A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used in a variety of applications, including microscopic actuators and grippers for surgical robots, light-powered micro-mirrors for optical telecommunications systems, and more efficient solar cells and photodetectors. "This is a new area ... read more


CHIP TECH
NavCube could support an X-ray communication test in space

Japan rocket with manga art launches satellite into space

NASA, Navy practice Orion module recovery

Weightless tourism just 4 years away

CHIP TECH
JCSAT-15 arrives in Kourou for Dec Ariane 5 launch

China launches first heavy-lift rocket

Aerojet Rocketdyne completes CST launch abort engine hot fire tests

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

CHIP TECH
'Millions' needed to continue Europe's Mars mission: ESA chief

Six people to spend two weeks in Mars simulation habitat in Poland

Opportunity makes small U-turn to reach summit of Spirit Mound

Schiaparelli crash site in colour

CHIP TECH
Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

Long March-7 being assembled, to transport Tianzhou-1

Kuaizhou-1 scheduled to launch in December

CHIP TECH
Sun-observing MinXSS CubeSat to yield insights into solar flare energetics

Optus achieves full certification of 4 teleports

ISRO's World record bid: Launching 83 satellites on single rocket

Shared vision and goals for the future of Europe in space

CHIP TECH
Vector and ATLAS partner to introduce new satellite ground architecture offering

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

Nickel-78 is a doubly magic isotope supercomputer confirms

Researchers bring eyewear-free 3-D capabilities to small screen

CHIP TECH
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

CHIP TECH
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.