. 24/7 Space News .
SOLAR SCIENCE
Solar system acquired current configuration not long after its formation
by Staff Writers
Sao Paulo, Brazil (SPX) Mar 24, 2020

Stock illustration

The hypothesis that the Solar System was born from a gigantic cloud of gas and dust was first floated in the second half of the eighteenth century. It was proposed by German philosopher Immanuel Kant and developed by French mathematician Pierre-Simon de Laplace. It is now a consensus among astronomers. Thanks to the enormous amount of observational data, theoretical input and computational resources now available, it has been continually refined, but this is not a linear process.

Nor is it without controversies. Until recently the Solar System was thought to have acquired its present features as a result of a period of turbulence that occurred some 700 million years after its formation.

However, some of the latest research suggests it took shape in the more remote past, at some stage during the first 100 million years and very probably between 10 million and 60 million years ago.

A study conducted by three Brazilian researchers offers robust evidence of this earlier structuring. Reported in an article published in the journal Icarus, the study was supported by Sao Paulo Research Foundation - FAPESP. The authors are all affiliated with Sao Paulo State University's Engineering School (FEG-UNESP) in Guaratingueta (Brazil).

The lead author is Rafael Ribeiro de Sousa. The other two authors are Andre Izidoro Ferreira da Costa and Ernesto Vieira Neto, principal investigator for the study.

"The large amount of data acquired from detailed observation of the Solar System enables us to define with precision the trajectories of the many bodies that orbit the Sun," Ribeiro told. "This orbital structure enables us to write the history of the formation of the Solar System.

Emerging from the gas and dust cloud that surrounded our star some 4.6 billion years ago, the giant planets formed in orbits closer to each other and also closer to the Sun. The orbits were also more co-planar and more circular than they are now, and more interconnected in resonant dynamic systems. These stable systems are the most likely outcome of the gravitational dynamics of planet formation from gaseous protoplanetary disks."

Izidoro offered more details. "The four giant planets - Jupiter, Saturn, Uranus and Neptune - emerged from the gas and dust cloud in more compact orbits," he said. "Their motions were strongly synchronous owing to resonant chains, with Jupiter completing three revolutions around the Sun while Saturn completed two. All the planets were involved in this synchronicity produced by the dynamics of the primordial gas disk and the gravitational dynamics of the planets."

However, throughout the formation region of the outer Solar System, which includes the zone located beyond the current orbits of Uranus and Neptune, the Solar System had a large population of planetesimals, small bodies of rock and ice considered the building blocks of planets and forerunners of asteroids, comets and satellites.

The outer planetesimal disk began disturbing the system's gravitational balance. The resonances were disrupted after the gas phase, and the system entered a period of chaos in which the giant planets interacted violently and ejected matter into space.

"Pluto and its icy neighbors were pushed into the Kuiper Belt, where they're located now, and the entire group of planets migrated to orbits more distant from the Sun," Ribeiro said.

The Kuiper Belt, whose existence was proposed in 1951 by Dutch astronomer Gerard Kuiper and later confirmed by astronomical observations, is a toroidal (doughnut-shaped) structure made up of thousands of small bodies orbiting the Sun.

The diversity of their orbits is not seen in any other part of the Solar System. The Kuiper Belt's inner edge begins at the orbit of Neptune about 30 astronomical units (AUs) from the Sun. The outer edge is about 50 AUs from the Sun. One AU is approximately equal to the average distance from Earth to the Sun.

Returning to the disruption of synchronicity and the onset of the chaotic stage, the question is when this happened - very early in the life of the Solar System, when it was 100 million years old or less, or much later, probably about 700 million years after the planets formed?

"Until recently the late instability hypothesis predominated," Ribeiro said. "Dating of the Moon rocks brought back by the Apollo astronauts suggested they were created by asteroids and comets crashing into the lunar surface at the same time.

This cataclysm is known as the 'late heavy bombardment' of the Moon. If it happened on the Moon, it presumably also happened on Earth and the Solar System's other terrestrial planets. Because a great deal of matter in the form of asteroids and comets was projected in all directions in the Solar System during the period of planetary instability, it was deduced from the Moon rocks that this chaotic period occurred late, but in recent years the idea of a 'late bombardment' of the Moon has fallen out of favor."

According to Ribeiro, if the late chaotic catastrophe had occurred it would have destroyed Earth and the other terrestrial planets, or at least caused disturbances that would have placed them in totally different orbits from those we observe now.

Furthermore, the Moon rocks brought back by the Apollo astronauts were found to have been produced by a single impact. If they had originated in late giant planet instability, there would be evidence of several different impacts, given the scattering of the planetesimals by the giant planets.

"The starting-point for our study was the idea that the instability should be dated dynamically. The instability can only have happened later if there was a relatively large distance between the inner edge of the disk of planetesimals and Neptune's orbit when the gas was exhausted. This relatively large distance proved unsustainable in our simulation," Ribeiro said.

The argument is based on a simple premise: the shorter the distance between Neptune and the planetesimal disk, the greater the gravitational influence, and hence the earlier the period of instability. Conversely, later instability requires a larger distance.

"What we did was sculpt the primordial planetesimal disk for the first time. To do so we had to go back to the formation of the ice giants Uranus and Neptune. Computer simulations based on a model constructed by Professor Izidoro [Ferreira da Costa] in 2015 showed that the formation of Uranus and Neptune may have originated in planetary embryos with several Earth masses. Massive collisions of these super-Earths would explain, for example, why Uranus spins on its side," Ribeiro said, referring to Uranus's "tilt", with north and south poles located on its sides rather than top and bottom.

Previous studies had pointed to the importance of the distance between Neptune's orbit and the inner boundary of the planetesimal disk, but they used a model in which the four giant planets were already formed.

"The novelty of this latest study is that the model doesn't begin with completely formed planets. Instead, Uranus and Neptune are still in the growth stage, and the growth driver is two or three collisions involving objects with up to five Earth masses," Izidoro said.

"Imagine a situation in which Jupiter and Saturn are formed but we have five to ten super-Earths instead of Uranus and Neptune. The super-Earths are forced by the gas to synchronize with Jupiter and Saturn, but being numerous their synchronicity fluctuates and they end up colliding. The collisions reduce their number, making synchronicity possible. Eventually Uranus and Neptune are left.

"While the two ice giants were forming in the gas, the planetesimal disk was being consumed. Part of the matter was accreted to Uranus and Neptune, and part was propelled to the outskirts of the Solar System. The growth of Uranus and Neptune therefore defined the position of the inner boundary of the planetesimal disk. What was left of the disk is now the Kuiper Belt. The Kuiper Belt is basically a relic of the primordial planetesimal disk, which was once far more massive."

The proposed model is consistent with the giant planets' current orbits and with the structure observed in the Kuiper Belt. It is also consistent with the motion of the Trojans, a large group of asteroids that share Jupiter's orbit and were presumably captured during the disruption of synchronicity.

According to a paper published by Izidoro in 2017 (read more at agencia.fapesp.br/26583), Jupiter and Saturn were still in formation, with their growth contributing to displacement of the asteroid belt. The latest paper is a kind of continuation, starting from a stage in which Jupiter and Saturn were fully formed but still synchronized, and describing the evolution of the Solar System from there on.

"Gravitational interaction between the giant planets and the planetesimal disk produced disturbances in the gas disk that spread in the form of waves. The waves produced compact and synchronous planetary systems. When the gas ran out, interaction between the planets and planetesimal disk disrupted the synchronicity and gave rise to the chaotic phase. Taking all this into account, we discovered that the conditions simply didn't exist for the distance between Neptune's orbit and the inner boundary of the planetesimal disk to become large enough to sustain the late instability hypothesis. This is the main contribution of our study, which shows that the instability occurred in the first hundred million years and may have occurred, for example, before the formation of Earth and the Moon," Ribeiro said.

Research Report: "On the relevance of small bodies in orbital dynamics"


Related Links
Fundacao De Amparo A Pesquisa Do Estado De Sao Paulo
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
BU astrophysicist and collaborators reveal a new model of our heliosphere
Boston MA (SPX) Mar 20, 2020
The heliosphere is a vast region, extending more than twice as far as Pluto. It casts a magnetic "force field" around all the planets, deflecting charged particles that would otherwise muscle into the solar system and even tear through DNA. However, the heliosphere, despite its name, is not actually a sphere. Space physicists have long compared its shape to a comet, with a round "nose" on one side and a long tail extending in the opposite direction. In 2015, using a new computer model and data fro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
NASA leadership assessing mission impacts of coronavirus

How Space Station research is helping NASA's plans to explore the Moon and Beyond

New Spinoff publication shares how NASA innovations benefit life on Earth

Mission Control adjusts to coronavirus conditions

SOLAR SCIENCE
SpaceX plans first manned flight to space station in May

NASA's mobile moon rocket tower 44% over budget, IG says

NASA, SpaceX plan return to human spaceflight from U.S. soil in mid-May

Spacex Falcon 9 launches sixth batch of Starlink satellites

SOLAR SCIENCE
NASA's Curiosity Mars rover takes a new selfie before record climb

NASA's Mars Perseverance Rover Gets Its Sample Handling System

Waves in thin Martian air with wide effects

ExoMars to take off for the Red Planet in 2022

SOLAR SCIENCE
China's Long March-7A carrier rocket fails in maiden flight

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

SOLAR SCIENCE
Soyuz to launch another batch of OneWeb constellation satellites

SpaceX launches Starlink mission from Florida

OneWeb launches 34 communications satellites from Kazakhstan

NewSpace Book on 10 Years of Commercial Space and Children's Book on Space Released

SOLAR SCIENCE
Europlanet launches 10 million euro research infrastructure supporting planetary science

Raytheon completes first tests of radar for anti-hypersonic sensor

Crowdsourced virtual supercomputer revs up virus research

L3Harris Technologies introduces new reflector antenna tailored for smallsat missions

SOLAR SCIENCE
Snapping A Space Shot

The Strange Orbits of 'Tatooine' Planetary Disks

Salmon parasite is world's first non-oxygen breathing animal

Observed: An exoplanet where it rains iron

SOLAR SCIENCE
Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.