Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Solar storms trigger Jupiter's 'Northern Lights'
by Staff Writers
London, UK (SPX) Mar 24, 2016

The Sun constantly ejects streams of particles into space in the solar wind. When giant storms erupt, the winds become much stronger and compress Jupiter's magnetosphere, shifting its boundary with the solar wind two million kilometres through space.

Solar storms trigger Jupiter's intense 'Northern Lights' by generating a new X-ray aurora that is eight times brighter than normal and hundreds of times more energetic than Earth's aurora borealis, finds new UCL-led research using NASA's Chandra X-Ray Observatory.

It is the first time that Jupiter's X-ray aurora has been studied when a giant storm from the Sun has arrived at the planet. The dramatic findings complement NASA's Juno mission this summer which aims to understand the relationship between the two biggest structures in the solar system - the region of space controlled by Jupiter's magnetic field (i.e. its magnetosphere) and that controlled by the solar wind.

"There's a constant power struggle between the solar wind and Jupiter's magnetosphere. We want to understand this interaction and what effect it has on the planet. By studying how the aurora changes, we can discover more about the region of space controlled by Jupiter's magnetic field, and if or how this is influenced by the Sun.

"Understanding this relationship is important for the countless magnetic objects across the galaxy, including exoplanets, brown dwarfs and neutron stars," explained lead author and PhD student at UCL Mullard Space Science Laboratory, William Dunn.

The Sun constantly ejects streams of particles into space in the solar wind. When giant storms erupt, the winds become much stronger and compress Jupiter's magnetosphere, shifting its boundary with the solar wind two million kilometres through space.

The study found that this interaction at the boundary triggers the high energy X-rays in Jupiter's Northern Lights, which cover an area bigger than the surface of the Earth.

Published in the Journal of Geophysical Research - Space Physics a publication of the American Geophysical Union, the discovery comes as NASA's Juno spacecraft nears Jupiter for the start of its mission this summer. Launched in 2011, Juno aims to unlock the secrets of Jupiter's origin, helping us to understand how the solar system, including Earth, formed.

As part of the mission, Juno will investigate Jupiter's relationship with the Sun and the solar wind by studying its magnetic field, magnetosphere and aurora. The UCL team hope to find out how the X-rays form by collecting complementary data using the European Space Agency's X-ray space observatory, XMM-Newton, and NASA's Chandra X-ray observatory.

"Comparing new findings from Jupiter with what is already known for Earth will help explain how space weather is driven by the solar wind interacting with Earth's magnetosphere.

"New insights into how Jupiter's atmosphere is influenced by the Sun will help us characterise the atmospheres of exoplanets, giving us clues about whether a planet is likely to support life as we know it," said study supervisor, Professor Graziella Branduardi-Raymont, UCL Mullard Space Science Laboratory.

The impact of solar storms on Jupiter's aurora was tracked by monitoring the X-rays emitted during two 11 hour observations in October 2011 when an interplanetary coronal mass ejection was predicted to reach the planet from the Sun. The scientists used the data collected to build a spherical image to pinpoint the source of the X-ray activity and identify areas to investigate further at different time points.

William Dunn added, "In 2000, one of the most surprising findings was a bright 'hot spot' of X-rays in the aurora which rotated with the planet. It pulsed with bursts of X-rays every 45 minutes, like a planetary lighthouse.

"When the solar storm arrived in 2011, we saw that the hot spot pulsed more rapidly, brightening every 26 minutes. We're not sure what causes this increase in speed but, because it quickens during the storm, we think the pulsations are also connected to the solar wind, as well as the bright new aurora."

Research paper: The impact of an ICME on the Jovian X-ray aurora


Related Links
University College London
Solar Science News at SpaceDaily

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Citizen scientists help NASA researchers understand auroras
Greenbelt MD (SPX) Mar 14, 2016
Space weather scientist Liz MacDonald has seen auroras more than five times in her life, but it was the aurora she didn't see that affected her the most. On the evening of Oct. 24, 2011, MacDonald was sitting in front of her computer at her home in Los Alamos, New Mexico. Forecasts predicted a geomagnetic storm would hit Earth that night and potentially create beautiful aurora. The aurora ... read more

Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

ExoMars probe imaged en route to Mars

New Gravity Map Gives Best View Yet Inside Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

British bacon sandwich en route to ISS tastes out of this world

NASA Selects American Small Business, Research Institution Projects for Continued Development

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

Three new members join crew of International Space Station

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Grandpa astronaut to break Scott Kelly's space record

MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

3D-printed component flies in Trident missile tests

The world's blackest material is now in spray form

INRS takes giant step forward in generating optical qubits

Saab showcases Sea Giraffe 1X air and surface naval radar

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.