Subscribe free to our newsletters via your
. 24/7 Space News .

Single molecules in a quantum movie
by Staff Writers
Vienna, Austria (SPX) Mar 27, 2012

These are selected frames of a movie showing the buildup of a quantum interference pattern from single phthalocyanine molecules. Credit: Image credits: University of Vienna/Juffmann et al. (Nature Nanotechnology 2012).

The quantum physics of massive particles has intrigued physicists for more than 80 years, since it predicts that even complex particles can exhibit wave-like behaviour - in conflict with our everyday ideas of what is real or local.

An international team of scientists now succeeded in shooting a movie which shows the build-up of a matter-wave interference pattern from single dye molecules which is so large (up to 0.1 mm) that you can easily see it with a camera.

This visualizes the dualities of particle and wave, randomness and determinism, locality and delocalization in a particularly intuitive way. Seeing is believing: the movie by Thomas Juffmann et al. will be published on March 25 in "Nature Nanotechnology".

A quantum premiere with dye molecules as leading actors
Physicist Richard Feynman once claimed that interference effects caused by matter-waves contain the only mystery of quantum physics. Understanding and applying matter waves for new technologies is also at the heart of the research pursued by the Quantum Nanophysics team around Markus Arndt at the University of Vienna and the Vienna Center for Quantum Science and Technology.

The scientists now premiered a movie which shows the build-up of a quantum interference pattern from stochastically arriving single phthalocyanine particles after these highly-fluorescent dye molecules traversed an ultra-thin nanograting.

As soon as the molecules arrive on the screen the researchers take live images using a spatially resolving fluorescence microscope whose sensitivity is so high that each molecule can be imaged and located individually with an accuracy of about 10 nanometers. This is less than a thousandth of the diameter of a human hair and still less than 1/60 of the wavelength of the imaging light.

A breath of nothing
In these experiments van der Waals forces between the molecules and the gratings pose a particular challenge. These forces arise due to quantum fluctuations and strongly affect the observed interference pattern.

In order to reduce the van der Waals interaction the scientists used gratings as thin as 10 nanometers (only about 50 silicon nitride layers). These ultra-thin gratings were manufactured by the nanotechnology team around Ori Cheshnovski at the Tel Aviv University who used a focused ion beam to cut the required slits into a free-standing membrane.

Tailored nanoparticles
Already in this study the experiments could be extended to phthalocyanine heavier derivatives which were tailor-made by Marcel Mayor and his group at the University of Basel. They represent the most massive molecules in quantum far-field diffraction so far.

Motivation and continuation
The newly developed and combined micro- and nanotechnologies for generating, diffracting and detecting molecular beams will be important for extending quantum interference experiments to more and more complex molecules but also for atom interferometry.

The experiments have a strongly didactical component: they reveal the single-particle character of complex quantum diffraction patterns on a macroscopic scale that is visible to the eye. You can see them emerge in real-time and they last for hours on the screen. The experiments thus render the wave-particle duality of quantum physics particularly tangible and conspicuous.

The experiments have a practical side, too. They allow to access molecular properties close to solid interfaces and they show a way towards future diffraction studies at atomically thin membranes.

Publication in "Nature Nanotechnology" Real-time single-molecule imaging of quantum interference: Thomas Juffmann, Adriana Milic, Michael Mullneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tuxen, Marcel Mayor, Ori Cheshnovsky and Markus Arndt. Nature Nanotechnology (2012). DOI: 10.1038/NNANO.2012.34. Online Publication: 25.3.2012


Related Links
University of Vienna
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Invisibility of magnetic fields made reality
Barcelona, Spain (SPX) Mar 26, 2012
UAB researchers, in collaboration with an experimental group from the Academy of Sciences of Slovakia, have created a cylinder which hides contents and makes them invisible to magnetic fields. The device was built using superconductor and ferromagnetic materials available on the market. The invention is published this week in the journal Science. The cylinder is built using high temperatur ... read more

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

A glow in the Martian night throws light on atmospheric circulation

Mars Science Laboratory Adjusts Orbital Path And Tests Instruments

Geologists discover new class of landform - on Mars

Red Food For the Red Planet

Not your average heat shield

NASA Seeks Space Launch System Advanced Development Solutions

Patent requests in Europe reach record in 2011

SciTechTalk: Can long space missions work?

China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

ESA Cargo Ship Carries Research and Technology Investigations to ISS

Japan Shares ISS SMILES via Atmospheric Data Distribution

ATV Edoardo Amaldi set for liftoff

Astrium: double delivery for ATV-3 Edoardo Amaldi launch

ILS Proton Launches Intelsat 22

US ramping up private sector's role in spaceflight

Europe's smart supply ship on its way to Space Station

Third Ariane 5 ready for launch in 2012

Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

Russia to Focus on Its Orbital Cluster - Popovkin

Materials inspired by Mother Nature: A 1-pound boat that could float 1,000 pounds

Soviet Weather Satellite to Fall to Earth

Boeing Receives Phased Array Antenna System Contract from Yahsat

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement