. 24/7 Space News .
TIME AND SPACE
Simulations show swirling rings, whirlpool-like structure in subatomic 'soup'
by Staff Writers
Berkeley CA (SPX) Nov 14, 2016


This hydrodynamic simulation shows the flow patterns, or 'vorticity distribution,' from a smoke ring-like swirling fluid around the beam direction of two colliding heavy ions. The simulation provides new insights about the properties of a superhot fluid known as the quark-gluon plasma. Image courtesy Berkeley Lab. For a larger version of this image please go here.

At its start, the universe was a superhot melting pot that very briefly served up a particle soup resembling a "perfect," frictionless fluid. Scientists have recreated this "soup," known as quark-gluon plasma, in high-energy nuclear collisions to better understand our universe's origins and the nature of matter itself. The physics can also be relevant to neutron stars, which are the extraordinarily dense cores of collapsed stars.

Now, powerful supercomputer simulations of colliding atomic nuclei, conducted by an international team of researchers including a Berkeley Lab physicist, provide new insights about the twisting, whirlpool-like structure of this soup and what's at work inside of it, and also lights a path to how experiments could confirm these characteristics. The work is published in the Nov. 1 edition of Physical Review Letters.

This soup contains the deconstructed ingredients of matter, namely fundamental particles known as quarks and other particles called gluons that typically bind quarks to form other particles, such as the protons and neutrons found at the cores of atoms. In this exotic plasma state - which can reach trillions of degrees Fahrenheit, hundreds of thousands of times hotter than the sun's core - protons and neutrons melt, freeing quarks and gluons from their usual confines at the center of atoms.

These record-high temperatures have been achieved by colliding gold nuclei at Brookhaven National Laboratory's RHIC (Relativistic Heavy Ion Collider), for example, and lead nuclei at CERN's LHC (Large Hadron Collider). Experiments at RHIC discovered in 2005 that quark-gluon plasma behaves like a fluid. In addition to gold nuclei, RHIC has also been used to collide protons, copper and uranium. The LHC began conducting heavy-ion experiments in 2014, and has confirmed that the quark-gluon plasma behaves like a fluid.

There remain many mysteries about the inner workings of this short-lived plasma state, which may only have existed for millionths of a second in the newborn universe, and nuclear physicists are using a blend of theory, simulations and experiments to glean new details about this subatomic soup.

Surprising complexity in plasma structure
"In our sophisticated simulations, we found that there is much more structure to this plasma than we realized," said Xin-Nian Wang, a theorist in the Nuclear Science Division at Berkeley Lab who has worked for years on the physics of high-energy nuclear collisions.

When plotted out in two dimensions, the simulations found that slightly off-center collisions of heavy nuclei produce a wobbling and expanding fluid, Wang said, with local rotation that is twisted in a corkscrew-like fashion.

This corkscrew character relates to the properties of the colliding nuclei that created the plasma, which the simulation showed expanding along - and perpendicular to - the beam direction. Like spinning a coin by flicking it with your finger, the simulations showed that the angular momentum properties of the colliding nuclei can transfer spin properties to the quark gluon plasma in the form of swirling, ring-like structures known as vortices.

The simulations showed two of these doughnut-shaped vortices - each with a right-handed orientation around each direction of the separate beams of the colliding nuclei - and also many pairs of oppositely oriented vortices along the longest dimension of the plasma. These doughnut-shaped features are analogous to swirling smoke rings and are a common feature in classical studies of fluids, a field known as hydrodynamics.

The simulations also revealed a patterned outward flow from hot spots in the plasma that resemble the spokes of a wheel. The time scale covered in the simulation was infinitesimally small, Wang said, roughly the amount of time it takes light to travel the distance of 10-20 protons. During this time the wobbling fluid explodes like a fireball, spurting the particle soup outward from its middle more rapidly than from its top.

Any new understanding of quark-gluon plasma properties should be helpful in interpreting data from nuclei-colliding experiments, Wang said, noting that the emergence of several localized doughnut-like structures in the simulations was "completely unexpected."

Unraveling a mystery
"We can think about this as opening a completely new window of looking at quark-gluon plasmas, and how to study them," he said. "Hopefully this will provide another gateway into understanding why this quark-gluon fluid is such a perfect fluid - the nature of why this is so is still a puzzle. This work will benefit not only theory, but also experiments."

The simulations provide more evidence that the quark-gluon plasma behaves like a fluid, and not a gas as had once been theorized. "The only way you can describe this is to have a very small viscosity," or barely any friction, a characteristic of a so-called 'perfect fluid' or 'fundamental fluid,'" Wang said. But unlike a familiar fluid like water, the simulation focuses on a fluid state hundreds of times smaller than a water molecule.

Michael Lisa, a physics professor at Ohio State University who is part of the collaboration supporting the Solenoidal Tracker at RHIC (STAR), said the so-called vorticity or "swirl structure" of this plasma has never been measured experimentally, though this latest theoretical work may help to home in on it. STAR is designed to study the formation and characteristics of the quark-gluon plasma.

"Wang and his collaborators have developed a sophisticated, state-of-the-art hydrodynamic model of the quark-gluon plasma and have identified swirling structures that vary within the fluid itself," he said. "Even more useful is the fact that they propose a method to measure these structures in the laboratory."

Lisa also said there is ongoing analysis work to confirm the simulation's findings in data from experiments at RHIC and the LHC. "It is precisely innovations like this, where theory and experiment collaborate to explore new phenomena, that hold the greatest hope for greater insight into the quark-gluon plasma," he said.

"Many tools have been used to probe the inner working mechanics and symmetry properties of this unique matter," said Zhangbu Xu, a spokesperson for the STAR collaboration and a staff scientist at Brookhaven National Laboratory. He also said that preliminary results from STAR also suggest some spinning motion in the fluid, and the simulation work "adds a new dimension" to this possibility.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
France doubles its experimental capability in nuclear physics
Paris, France (SPX) Nov 08, 2016
The new SPIRAL2 particle accelerator at the French large heavy-ion accelerator GANIL (CNRS/CEA), inaugurated on November 3 in the presence of the French President Francois Hollande, will be able to produce immensely powerful particle beams, enabling scientists to push back the frontiers of knowledge. This will double France's experimental capability in nuclear physics, especially with rega ... read more


TIME AND SPACE
Russian New Generation Satellites to Undergo First Flight Tests in 2020

NASA, U.S. Navy Practice Orion Recovery Procedures

Russia space center to work with US on spaceflight biomed issues

Progress, but uphill slog for women in tech

TIME AND SPACE
Ariane 5 at launch zone for Nov 17 mission with four Galileo satellites

Airbus Safran Launchers and ESA sign confirmation of the Ariane 6 program

US revives hypersonic aerospace research

JCSAT-15 arrives in Kourou for Dec Ariane 5 launch

TIME AND SPACE
Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

Meteorites reveal lasting drought on Mars

Opportunity heads to next waypoint at over 27 miles on the odometer

TIME AND SPACE
China launches pulsar test satellite

China's Chang'e-2 a success

Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

TIME AND SPACE
Can India beat China at its game with common satellite for South Asia

SSL delivers powerful, high capacity broadband satellite for Hughes to Cape Canaveral

NASA to Launch Fleet of Hurricane-Tracking SmallSats

NASA small satellites will take a fresh look at Earth

TIME AND SPACE
Scientists have 'scared away' microparticles with laser light

Study: Math scares everyone, even physicists

Exotic property of salty solutions discovered

Tiny magnifying glass reveals chemical bonds between atoms

TIME AND SPACE
Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

What happens to a pathogenic fungus grown in space?

TIME AND SPACE
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.