Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Silicon chip with integrated laser: Light from a nanowire
by Staff Writers
Munich, Germany (SPX) Feb 12, 2016


Gallium-arsenide nanowires are on a silicon surface. Image courtesy Thomas Stettner/Philipp Zimmermann / TUM. For a larger version of this image please go here.

Physicists at the Technical University of Munich (TUM) have developed a nanolaser, a thousand times thinner than a human hair. Thanks to an ingenious process, the nanowire lasers grow right on a silicon chip, making it possible to produce high-performance photonic components cost-effectively. This will pave the way for fast and efficient data processing with light in the future.

Ever smaller, ever faster, ever cheaper - since the start of the computer age the performance of processors has doubled on average every 18 months. 50 years ago already, Intel co-founder Gordon E. Moore prognosticated this astonishing growth in performance. And Moore's law seems to hold true to this day.

But the miniaturization of electronics is now reaching its physical limits. "Today already, transistors are merely a few nanometers in size. Further reductions are horrendously expensive," says Professor Jonathan Finley, Director of the Walter Schottky Institute at TUM. "Improving performance is achievable only by replacing electrons with photons, i.e. particles of light."

Photonics - the silver bullet of miniaturization
Data transmission and processing with light has the potential of breaking the barriers of current electronics. In fact, the first silicon-based photonics chips already exist. However, the sources of light for the transmission of data must be attached to the silicon in complicated and elaborate manufacturing processes. Researchers around the world are thus searching for alternative approaches.

Scientists at the TU Munich have now succeeded in this endeavor: Dr. Gregor Koblmuller at the Department of Semiconductor Quantum-Nanosystems has, in collaboration with Jonathan Finley, developed a process to deposit nanolasers directly onto silicon chips. A patent for the technology is pending.

Growing a III-V semiconductor onto silicon requires tenacious experimentation. "The two materials have different lattice parameters and different coefficients of thermal expansion. This leads to strain," explains Koblmuller. "For example, conventional planar growth of gallium arsenide onto a silicon surface results therefore in a large number of defects."

The TUM team solved this problem in an ingenious way: By depositing nanowires that are freestanding on silicon their footprints are merely a few square nanometers. The scientists could thus preclude the emerging of defects in the GaAs material.

Atom by atom to a nanowire
But how do you turn a nanowire into a vertical-cavity laser? To generate coherent light, photons must be reflected at the top and bottom ends of the wire, thereby amplifying the light until it reaches the desired threshold for lasing.

To fulfil these conditions, the researchers had to develop a simple, yet sophisticated solution: "The interface between gallium arsenide and silicon does not reflect light sufficiently. We thus built in an additional mirror - a 200 nanometer thick silicon oxide layer that we evaporated onto the silicon," explains Benedikt Mayer, doctoral candidate in the team led by Koblmuller and Finley. "Tiny holes can then be etched into the mirror layer. Using epitaxy, the semiconductor nanowires can then be grown atom for atom out of these holes."

Only once the wires protrude beyond the mirror surface they may grow laterally - until the semiconductor is thick enough to allow photons to jet back and forth to allow stimulated emission and lasing. "This process is very elegant because it allows us to position the nanowire lasers directly also onto waveguides in the silicon chip," says Koblmuller.

Basic research on the path to applications
Currently, the new gallium arsenide nanowire lasers produce infrared light at a predefined wavelength and under pulsed excitation. "In the future we want to modify the emission wavelength and other laser parameters to better control temperature stability and light propagation under continuous excitation within the silicon chips," adds Finley.

The team has just published its first successes in this direction. And they have set their sights firmly on their next goal: "We want to create an electric interface so that we can operate the nanowires under electrical injection instead of relying on external lasers," explains Koblmuller.

"The work is an important prerequisite for the development of high-performance optical components in future computers," sums up Finley. "We were able to demonstrate that manufacturing silicon chips with integrated nanowire lasers is possible."

.


Related Links
Technical University of Munich
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Laser Debris Shields
Surrey UK (SPX) Jan 26, 2016
Optical Surfaces Ltd. is a leading supplier of laser debris shields (also known as protective windows or cover slides) to protect target-facing optics located in high-power laser facilities. Debris shields help prevent damage to the focusing optics in laser beam delivery systems caused by dust, shrapnel and fragments originating from the target during laser processing. Optical Surfaces' de ... read more


TECH SPACE
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

TECH SPACE
Becoming a Martian

Site of Martian lakes linked to ancient habitable environment

Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

TECH SPACE
Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

TECH SPACE
China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

TECH SPACE
Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

TECH SPACE
Arianespace to launch two ViaSat high capacity satellites

SpaceX Conducts Hover Tests

Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

TECH SPACE
Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

TECH SPACE
Scientists from MIPT gain insights into 'forbidden' chemistry

Some 5,000 years ago, silver mining on the shores of the Aegean Sea

Flow phenomena on solid surfaces

Twisted X-rays unravel the complexity of helical structures




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.