Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TIME AND SPACE
Shattering the Cosmic Distance Record, Once Again
by Staff Writers
New Haven, CT (SPX) Mar 04, 2016


The newly discovered galaxy, named MACS0647-JD, is very young and only a tiny fraction of the size of our Milky Way. The object is observed 420 million years after the big bang. The inset at left shows a close-up of the young dwarf galaxy. This image is a composite taken with Hubble's WFC 3 and ACS on Oct. 5 and Nov. 29, 2011. Credit: NASA, ESA, and M. Postman and D. Coe (STScI) and CLASH Team.

Yale astronomers have found the farthest known galaxy in the universe - again. Less than a year after aiding in the measurement of a galaxy 13.1 billion light years into the past, Yale researchers led an international team that included the Space Telescope Science Institute and the University of California-Santa Cruz to measure a galaxy whose light took 13.4 billion light-years to reach Earth. The findings appear in an upcoming edition of the Astrophysical Journal.

Described by its discoverers as "surprisingly bright," the galaxy, named GN-z11, is located in the direction of the constellation of Ursa Major. Its measurement allows scientists to peer at light from a period just 400 million years after the big bang. The researchers made the measurement with NASA's Hubble Space Telescope.

"We've taken a major step back in time, beyond what we'd ever expected to be able to do with Hubble. We see the galaxy at a time when the universe was only 3% of its current age, very close to the end of the so-called Dark Ages of the universe," said Yale astronomer Pascal Oesch, the principal investigator.

Previously, astronomers had estimated GN-z11's distance by determining its color through imaging with Hubble and NASA's Spitzer Space Telescopes. Now, for the first time for a galaxy at such an extreme distance, the research team used Hubble's Wide Field Camera 3 to precisely measure the distance to GN-z11 spectroscopically, by splitting the light into its component colors.

Astronomers measure large distances by determining the "redshift" of a galaxy - a phenomenon caused by the expansion of the universe. Every distant object in the universe appears to be receding from us because its light is stretched to longer, redder wavelengths: the greater the redshift, the farther the galaxy.

"To our great surprise Hubble measured a redshift of 11.1, much larger than the previous record of 8.7. It's an extraordinary accomplishment for the telescope, as it managed to beat all the much larger ground-based telescopes that held the previous distance records for years," said Pieter van Dokkum, the Sol Goldman Family Professor of Astronomy and chair of Yale's Department of Astronomy, who is a co-author of the findings.

The measurement builds on and uses the same techniques first developed by Yale astronomers as part of the successful 3D-HST survey, led by van Dokkum, who said the new distance record is likely to stand until the launch of NASA's James Webb Space Telescope in 2018.

The researchers said GN-z11 is 25 times smaller than the Milky Way in size and has just 1% of our galaxy's mass in stars. However, the newborn GN-z11 is growing fast, forming stars at a rate about 20 times faster than our galaxy does today. This makes the remote galaxy bright enough for Hubble to find and perform detailed observations.

Study co-author Garth Illingworth of the University of California-Santa Cruz said the results reveal clues about the nature of the early universe. "It's amazing that a galaxy so massive existed only 200 to 300 million years after the very first stars started to form," Illingworth said. "It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses (one solar mass is equal to the mass of the Sun) so soon."

"The discovery of this unexpectedly bright galaxy at such a great distance challenges some of our current theoretical models for the build-up of galaxies," said van Dokkum. "Larger area datasets are now needed to measure how common such bright galaxies really are so early in the history of the universe."

Oesch said the findings provide a tantalizing preview of the observations that NASA's upcoming James Webb Space Telescope is expected to perform. "Hubble and Spitzer are already reaching into Webb territory," Oesch said.

.


Related Links
Yale
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Hubble spies Big Bang frontiers
Paris (ESA) Oct 23, 2015
Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the Universe. Some of these galaxies formed just 600 million years after the Big Bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined, for the first time with some confidence, that thes ... read more


TIME AND SPACE
NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

TIME AND SPACE
MAVEN Observes Mars Moon Phobos in the Mid- and Far-Ultraviolet

SSL developing robotic sample handling assembly for Mars 2020

Monster volcano gave Mars extreme makeover: study

Rover begins contact science of rock target on Knudsen Ridge

TIME AND SPACE
Launch America: Suni Williams on Commercial Crew

Orion Solar Array Wing Deployment Test is a Success

Orion launch abort motor case passes structural qualification test

Former Marine astronaut leading flight plans for NASA's mission

TIME AND SPACE
China to Launch Over 100 Long March Rockets Within Five Years

Moving in to Tiangong 2

Logistics Rule on Tiangong 2

China to launch second space lab Tiangong-2 in Q3

TIME AND SPACE
International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

TIME AND SPACE
At last second, SpaceX delays satellite launch again

Arianespace Soyuz to launch 2 Galileo satellites in May

SpaceX postpones rocket launch again

Russian rocket engines ban could leave US space program in limbo

TIME AND SPACE
Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

TIME AND SPACE
New NIST method may find elusive flaws in medical implants and spacecraft

Spacepath Communications creates new joint venture with Polarity in US

Chinese firm abandons acquisition over US scrutiny

Bone research could yield stronger synthetic materials




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.