Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Sharpest view ever of dusty disc around aging star
by Staff Writers
Munich, Germany (SPX) Mar 10, 2016

The Very Large Telescope Interferometer at ESO's Paranal Observatory in Chile has obtained the sharpest view ever of the dusty disc around the close pair of aging stars IRAS 08544-4431. For the first time such discs can be compared to the discs around young stars -- and they look surprisingly similar. It is even possible that a disc appearing at the end of a star's life might also create a second generation of planets. The inset shows the VLTI reconstructed image, with the brighter central star removed. The background view shows the surroundings of this star in the constellation of Vela (The Sails). Image courtesy ESO/Digitized Sky Survey 2. Image courtesy Davide De Martin. For a larger version of this image please go here.

As they approach the ends of their lives many stars develop stable discs of gas and dust around them. This material was ejected by stellar winds, whilst the star was passing through the red giant stage of its evolution. These discs resemble those that form planets around young stars. But up to now astronomers have not been able to compare the two types, formed at the beginning and the end of the stellar life cycle.

Although there are many discs associated with young stars that are sufficiently near to us to be studied in depth, there are no corresponding old stars with discs that are close enough for us to obtain detailed images.

But this has now changed. A team of astronomers led by Michel Hillen and Hans Van Winckel from the Instituut voor Sterrenkunde in Leuven, Belgium, has used the full power of the Very Large Telescope Interferometer (VLTI) at ESO's Paranal Observatory in Chile, armed with the PIONIER instrument, and the newly upgraded RAPID detector.

Their target was the old double star IRAS 08544-4431 [1], lying about 4000 light-years from Earth in the southern constellation of Vela (constellation) (The Sails). This double star consists of a red giant star, which expelled the material in the surrounding dusty disc, and a less-evolved more normal star orbiting close to it.

Jacques Kluska, team member from Exeter University, United Kingdom, explains: "By combining light from several telescopes of the Very Large Telescope Interferometer, we obtained an image of stunning sharpness - equivalent to what a telescope with a diameter of 150 metres would see. The resolution is so high that, for comparison, we could determine the size and shape of a one euro coin seen from a distance of two thousand kilometres."

Thanks to the unprecedented sharpness of the images [2] from the Very Large Telescope Interferometer, and a new imaging technique that can remove the central stars from the image to reveal what lies around them, the team could dissect all the building blocks of the IRAS 08544-4431 system for the first time.

The most prominent feature of the image is the clearly resolved ring. The inner edge of the dust ring, seen for the first time in these observations, corresponds very well with the expected start of the dusty disc: closer to the stars, the dust would evaporate in the fierce radiation from the stars.

"We were also surprised to find a fainter glow that is probably coming from a small accretion disc around the companion star. We knew the star was double, but weren't expecting to see the companion directly. Itis really thanks to the jump in performance now provided by the new detector in PIONIER, that we are able to view the very inner regions of this distant system," adds lead author Michel Hillen.

The team finds that discs around old stars are indeed very similar to the planet-forming ones around young stars. Whether a second crop of planets can really form around these old stars is yet to be determined, but it is an intriguing possibility.

"Our observations and modelling open a new window to study the physics of these discs, as well as stellar evolution in double stars. For the first time the complex interactions between close binary systems and their dusty environments can now be resolved in space and time," concludes Hans Van Winckel.

This research was presented in a paper entitled "Imaging the dust sublimation front of a circumbinary disk", by M. Hillen et al., to appear as a letter in the journal Astronomy and Astrophysics.


Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Evidence found for unstable heavy element at solar system formation
Chicago IL (SPX) Mar 07, 2016
University of Chicago scientists have discovered evidence in a meteorite that a rare element, curium, was present during the formation of the solar system. This finding ends a 35-year-old debate on the possible presence of curium in the early solar system, and plays a crucial role in reassessing models of stellar evolution and synthesis of elements in stars. Details of the discovery appear in th ... read more

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

Mission to Mars brings Russia and Europe together

Mars robot launch now scheduled for May 2018: NASA

Proton-M carrier rocket assembled ahead of Mars Mission

Ten Years of Discovery by Mars Reconnaissance Orbiter

First tomatoes, peas harvested from mock Martian farm

Commercial Crew: Building in Safety from the Ground Up in a Unique Way

Russian company set to usher in era of suborbital tourism

Space shouldn't be exclusive domain of big nations: astronauts

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

China's ambition after space station

Sky is the limit for China's national strategy

International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

Ariane 5 launch contributes to Ariane 6 development

SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

At last second, SpaceX delays satellite launch again

Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Aerojet Rocketdyne tests 3D printed injector in upper stage engine

New laser achieves wavelength long sought by laser developers

Stretchable electronics that quadruple in length

New radar system set for testing

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.