Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
Shadow of Gas Cloud Detected in Ancient Proto-Supercluster
by Staff Writers
Hilo, HI (SPX) Mar 31, 2017


The distribution of galaxies in the proto-supercluster region 11.5 billion years ago (top left), and the Subaru Telescope Suprime-Cam image used in this work (right, larger image). Neutral hydrogen gas distribution is superposed on the Subaru image. The red color indicates denser regions of the neutral hydrogen gas. Cyan squares correspond to member galaxies in the proto-supercluster, while objects without cyan squares are foreground galaxies and stars. The distribution of neutral hydrogen gas does not align perfectly with the galaxies. Image courtesy Osaka Sangyo University/NAOJ. For a larger version of this image please go here.

A team led by researchers from Osaka Sangyo University, with members from Tohoku University, Japan Aerospace Exploration Agency (JAXA) and others, has used the Suprime-Cam on the Subaru Telescope to create the most-extensive map of neutral hydrogen gas in the early universe.

This cloud appears widely spread out across 160 million light-years in and around a structure called the proto-supercluster. It is the largest structure in the distant universe, and existed some 11.5 billion years ago. Such a huge gas cloud is extremely valuable for studying large-scale structure formation and the evolution of galaxies from gas in the early universe, and merits further investigation.

"We are surprised because the dense gas structure is extended much more than expected in the proto-supercluster," said Dr. Mawatari. "Wider field observations with narrow-band filters are needed to grasp full picture of this largest structure in the young universe. This is exactly the type of strong research that can be done with Hyper Suprime-Cam (HSC) recently mounted at the Subaru Telescope. We intend to study the gas-galaxy relation in various proto-superclusters using the HSC."

Understanding Matter Distribution in the Universe

Stars assembled to form galaxies, and galaxies are clustered to form larger structures such as clusters or superclusters. Matter in the current universe is structured in a hierarchical manner on scales of ~100 million light-years. However, we cannot observe inhomogeneous structure in any direction or distance over scales larger than that.

One important issue in modern astronomy is to clarify how perfectly the large-scale uniformity and homogeneity in matter distribution is maintained. In addition, astronomers seek to investigate the properties of the seeds of large-scale structures (i.e., the initial matter fluctuations) that existed at the beginning of the universe.

Thus, it is important to observe huge structures at various epochs (which translates to distances). The study of gaseous matter as well as galaxies is needed for an accurate and comprehensive understanding. This is because local superclusters are known to be rich in gas.

Furthermore, it is clear that there are many newborn galaxies in ancient (or distant) clusters. A detailed comparison between the spatial distributions of galaxies and gas during the early epochs of the universe is very important to understand process of galaxy formation from the dim (low light-emitting) clumps of gas in the early universe.

In order to investigate early, dim gas clouds, astronomers take advantage of the fact that light from bright distant objects gets dimmed by foreground gas (giving an effect like a "shadow picture").

Since neutral hydrogen in the gas cloud absorbs and dims light from background objects at a certain wavelength, we can see characteristic absorption features in the spectrum of the background object. In many previous observations, researchers used quasars (which are very bright and distant) as background light sources. Because bright quasars are very rare, opportunities for such observations are limited.

This allows astronomers to get information about the gas that lies only along the line of sight between a single QSO and Earth in a wide survey area. It has long been the goal to obtain "multi-dimensional" information of gas (e.g., spatially resolve the gas clouds) rather than the "one-dimensional" view currently available. This requires a new approach.

Expanding the View
To widen their view of these objects in the early universe, Dr. Ken Mawatari at Osaka Sangyo University and his colleagues recently developed a scheme to analyze the spatial distribution of the neutral hydrogen gas using imaging data of galaxies of the distant epoch. There are two major advantages to this approach.

First, instead of rare quasars, the team uses numerous normal galaxies as background light sources to investigate gas distribution at various places in the search area. Second, they use imaging data taken with the narrow-band filter on Suprime-Cam. It is fine-tuned so that light with certain wavelengths can be transmitted, to capture evidence of absorption by the neutral hydrogen gas (the shadow picture effect). Compared with the traditional scheme of observations based on spectroscopy of quasars, this new method enables Mawatari and his collaborators to obtain wide-area gas distribution information relatively quickly.

The researchers applied their scheme to the Subaru Telescope Suprime-Cam imaging data taken in their previous large survey of galaxies. The fields investigated in this work include the SSA22 field, an ancestor of a supercluster of galaxies (proto-supercluster), where young galaxies are formed actively, 11.5 billion years ago in the early universe.

New Maps of Neutral Hydrogen Distribution
The researchers' work resulted in very wide-area maps of the neutral hydrogen gas in the three fields studied. It appears that the neutral hydrogen gas absorption is significantly strong over the entire SSA22 proto-supercluster field compared with those in the normal fields (SXDS and GOODS-N). It is clearly confirmed that the proto-supercluster environment is rich in neutral hydrogen gas, which is the major building block of galaxies.

The team's work also revealed that gas distribution in the proto-supercluster region does not align with the galaxies' distribution perfectly. While the proto-supercluster is rich in both galaxies and gas, there is no local-scale dependency of gas amount correlated with the density of galaxies inside the proto-supercluster.

This result may mean that the neutral hydrogen gas not only is associated with the individual galaxies but also spreads out diffusely across intergalactic space only within the proto-supercluster. Since the neutral hydrogen gas excess in the SSA22 field is detected over the entire searched area, this overdense gas structure is actually extended more than 160 million light-years.

In the traditional view of structure formation, matter density fluctuation is thought to be smaller and large-scale high-density structure was rarer in the early universe. The discovery that a gas structure that extends across more than 160 million light-years (which is roughly the same as present-day superclusters in scale) already existed in the universe 11.5 billion years ago is a surprising result of this study.

By investigating spatial distribution of the neutral hydrogen gas in a very large area, the researchers have provided a new window on the relation between gas and galaxies in the young universe. The SSA22 huge gas structure revealed by this work is considered a key object to test the standard theory of structure formation, and so further investigation is anticipated.

This research will be published in the journal of the British Royal Astronomical Society (Monthly Notices of the Royal Astronomical Society, publisher Oxford University Press) in its June 2017 issue of the printed version (Mawatari et al. 2017, MNRAS, 467, 3951, "Imaging of Diffuse HI Absorption Structure in the SSA22 Protocluster Region at z = 3.1"

STELLAR CHEMISTRY
Milky Way-like galaxies in early universe embedded in 'super halos'
Charlottesville VA (SPX) Mar 28, 2017
By harnessing the extreme sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have directly observed a pair of Milky Way-like galaxies seen when the universe was only eight percent of its current age. These progenitors of today's giant spiral galaxies are surrounded by "super halos" of hydrogen gas that extend many tens-of-thousands of light-years beyond their dus ... read more

Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
US astronaut John Glenn is buried with military honors

Russia, Europe, US Should Work Together on Space Exploration - German Agency

United Launch Alliance Completes Crew Emergency Egress System

Robot Fedor to Guide Russia's Federation Spacecraft in Maiden Flight - Roscosmos

STELLAR CHEMISTRY
US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

Kremlin Believes Russia Can Compete With Private Firms Like SpaceX in Space

US Hardware Production Begins for Money-Saving Next-Generation Rockets

STELLAR CHEMISTRY
Russia critcal to ExoMars Project says Italian Space Agency Head

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

Prolific Mars Orbiter Completes 50,000 Orbits

STELLAR CHEMISTRY
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

STELLAR CHEMISTRY
Ukraine Plans to Launch Telecom Satellite in Fourth Quarter of 2017

Russian Satellite Builder Reshetnev Fully Switches to Import Substitution

Russia Offering Brazil to Develop Gonets-Like Satellite System - Manufacturer

Intelsat-OneWeb Merger: Enhanced Connections for Government Users

STELLAR CHEMISTRY
Norway joins US Strategic Command space data sharing program

Citizen scientist photographs space station space debris from Earth

European conference on space debris risks and mitigation

SES and Thales Unveil Next-Generation Capabilities Onboard SES-17

STELLAR CHEMISTRY
Inside Arctic ice lies a frozen rainforest of microorganisms

Exoplanet mission gets ticket to ride

TRAPPIST-1 flares threaten possibility of habitability on surrounding exoplanets

Atmosphere around super-earth detected

STELLAR CHEMISTRY
Neptune's movement from the inner to the outer solar system was smooth and calm

Hubble takes close-up portrait of Jupiter

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement