. 24/7 Space News .
ROBO SPACE
Servosila Robotic Arms product line is launched by Servosila
by Staff Writers
Hong Kong (SPX) Sep 19, 2016


Servosila Robotic Arms are attachable payload modules for mobile service robots or other robotic platforms.

Servosila, a robotics technology company, announced a launch of a new line of robotic arm manipulators specifically targeted at mobile robotics market.

"Servosila Robotic Arms are the first manipulators specifically designed for mobile robots," - said the company's spokesperson, - "it is very easy to retrofit any existing robotic chassis or a torso with a Servosila Robotic Arm".

Servosila Robotic Arms are attachable payload modules for mobile service robots or other robotic platforms. Servosila Robotic Arms shall typically be mounted on a chassis or a torso of a mobile robot and be powered by an on-board power supply system of the host robotic platform.

The robotic arms can be used both outdoors and indoors. The arms are water-tight, dust-proof and function properly in the rain and in the snow. The arms are designed to withstand impacts, collisions with obstacles and, in general, the harsh treatment so common to mobile robotics applications.

The servo drives and external electrical connectors of the robotic arms are water-tight and dust-proof (IP68 rating). The entire arm can be occasionally submersed in water without any adverse effects on its performance. The robotic arms may be operated in cold or hot weather.

Mobile robots tend to bump into things and hit obstacles while on the move. The harsh nature of outdoor mobile robotics applications caused a profound effect on the design of Servosila Robotic Arms, especially on the internal structure of servo drives and their harmonic reduction gears.

There are no exposed cables on the outside of the robotic arms that could be torn off when a mobile robot moves through bushes or forests.

Numerous protection measures built into electronic servo controllers and mechanical parts of Servosila Robotic Arms ensure reliable operation on-board of outdoor mobile service robots.

Servosila Robotic Arms are lightweight by design. For a given lifting capability, Servosila Robotic Arms have a significantly lower weight than their industrial counterparts. The lower weight of a Servosila Robotic Arm enables a mobile robot equipped with the arm to operate longer on a single battery charge, keep its center of gravity lower for better balance, climb stairs easier or have a superior mobility.

When not in an active use, Servosila Robotic Arms can folded into a very compact form that doesn't occupy much space on the top of a robotic chassis or on the side of a torso. This feature protects the robotic arm of a mobile robot in case of an unexpected collision with an obstacle or whenever a rough terrain is encountered by the mobile robotic platform. The compact folded form also comes handy during transportation.

By folding its robotic arm into the compact form, the robot frees up its working area for other payloads to operate in. This is useful in case the robot is equipped with additional payloads other than the robotic arm.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Servosila Robotic Arms
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Team of robots learns to work together, without colliding
Atlanta GA (SPX) Sep 13, 2016
When roboticists create behaviors for teams of robots, they first build algorithms that focus on the intended task. Then they wrap safety behaviors around those primary algorithms to keep the machines from running into each other. Each robot is essentially given an invisible bubble that other robots must stay away from. As long as nothing touches the bubble, the robots move around without ... read more


ROBO SPACE
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

ROBO SPACE
A Mixed-reality Trip to Mars

Mars 2020 rover to produce oxygen: NASA

Opportunity Heads Toward First Waypoint of its Next Extended Mission

Mars hosted lakes, snowmelt-fed streams much later than previously thought

ROBO SPACE
Every day closer to a new way to orbit

Taiwan's summer slump as Chinese visitors stay away

Entropy

Goddard space center mission-critical for ISS astronauts

ROBO SPACE
Tiangong 2 initial tests proceeding well

China's space lab Tiangong-2 enters in-orbit test track

China's Tiangong-1 space station to crash into Earth in 2017

Tiangong-2 "another significant step" for building China's space station

ROBO SPACE
Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

Space Station's orbit adjusted Wednesday

ROBO SPACE
Rocket agreement marks countdown to New Zealand's first space launch

Parallel launch preparations put Ariane 5 on track for next launch

Vega orbits "eyes in the skies" on its latest success

Russia postpones Soyuz MS-02 ISS launch due to electrical glitch

ROBO SPACE
Stellar activity can mimic misaligned exoplanets

ALMA locates possible birth site of icy giant planet

New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

ROBO SPACE
UK increases investment in Magna Parva in-space manufacturing tech

Tardigrades use protective protein to shield their DNA from radiation

'Virtual orchestra' hits high notes in London

Study investigates steel-eating microbes on ship hulls









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.