. 24/7 Space News .
EXO LIFE
Serpentinization: Nutrients of biological organisms in hydrothermal fields
by Staff Writers
Beijing, China (SPX) Dec 31, 2015


Hydrothermal fields resemble the early history of Earth.

The discovery of hydrothermal fields at ocean floor opens a new chapter for marine sciences. Fluids in hydrothermal fields are hot and acidic, where at least 400 different biological organisms have been detected, including shrimp, crab and bacteria.

Such biological organisms are resistant to high temperature, acidic fluids, and high pressure, and they are dependent on energy and materials (hydrogen gas, methane, ethane and propane, and organic acids) provided by the interaction between basement rocks and seawater (i.e. serpentinization).

Hydrothermal fields resemble the early history of Earth. Therefore, serpentinization potentially contributes to the origin and evolution of life.

Numerous experimental studies have been performed on the formation of hydrogen gas and hydrocarbons during serpentinization. However, olivine was usually taken as the starting material to represent peridotite. Although olivine is the most abundant mineral in peridotite, it may not completely represent peridotite during alteration, possibly caused by the effect of pyroxene and spinel.

A recent study performed by groups of Guangzhou Institute of Geochemistry and South China Sea Institute of Oceanology, Chinese Academy of Sciences, compared the production of hydrogen gas and hydrocarbons during olivine and peridotite serpentinization.

The results show that peridotite serpentinization produces much larger amounts of hydrogen gas and methane than those formed during olivine alteration, while the quantities of ethane and propane are identical. It indicates that pyroxene and spinel promote the formation of hydrogen gas and methane.

This study may be significant for the interaction between the atmosphere and lithosphere at the early history of Earth, which is probably crucial for the formation of organism and the origin of life.

The production of hydrocarbons is proposed to depend mainly on catalysts. However, this work shows that initial grain sizes of peridotite and olivine dramatically affect the formation of hydrogen gas and hydrocarbons.

At the early stage, serpentinization of peridotite with large grain sizes produces much less hydrogen gas and hydrocarbons than those formed during alteration of peridotite with smaller grain sizes; with progressive reaction, their hydrogen gas is identical, while the former still has much less hydrocarbons than the latter. It indicates the formation of hydrocarbons depends on the kinetics and reaction progresses of serpentinization.

Research Paper: Olivine versus peridotite during serpentinization: Gas formation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Science China Press
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO LIFE
Is evolution more intelligent than we thought
Southampton, UK (SPX) Dec 21, 2015
Evolution may be more intelligent than we thought, according to a University of Southampton professor. Professor Richard Watson says new research shows that evolution is able to learn from previous experience, which could provide a better explanation of how evolution by natural selection produces such apparently intelligent designs. By unifying the theory of evolution (which shows ho ... read more


EXO LIFE
Russia Postpones Plans on Extensive Moon Exploration Until 2025

Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

EXO LIFE
NASA suspends March launch of InSight mission to Mars

Boulders on a Martian Landslide

University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

EXO LIFE
Astronauts Tour Future White Room, Crew Access Tower

15 in '15: NASA's Commercial Crew Program Moves Closer to Flight

ISRO's year in review 2015

Celebrity chefs create gourmet delights for astronauts

EXO LIFE
Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

EXO LIFE
Space Station Receives New Space Tool to Help Locate Ammonia Leaks

NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Two whacks is all it takes for spacewalk repair

EXO LIFE
45th Space Wing launches ORBCOMM; historically lands first stage booster

SpaceX rocket landing opens 'new door' to space travel

NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

EXO LIFE
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

EXO LIFE
Port of call at 36,000 KM for in-orbit servicing

Nature's masonry: The first steps in how thin protein sheets form polyhedral shells

Move aside carbon: Boron nitride-reinforced materials are even stronger

Super strong, lightweight metal could build tomorrow's spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.