. 24/7 Space News .
WATER WORLD
Sentinel-3 and the ocean carbon conundrum
by Staff Writers
Paris (ESA) Feb 26, 2016


Sentinel-3's Ocean and Land Colour Instrument will provide data for a variety of marine biogeochemical products including algal pigment concentration, total suspended matter, coloured dissolved organic matter and Chlorophyll-a, amongst others. Information such as this will, for example, help to improve the prediction of harmful algal blooms. In turn, this will help oceanic food sources to be managed more efficiently. The input of waste products into ocean and coastal waters can also be monitored so that the possibility of accidents and risks of major pollution incidents can be reduced. Image courtesy ESA/ATG medialab. Watch a video on the technology here.

Each year, about a quarter of the carbon dioxide we release into the atmosphere ends up in the ocean, but how it happens is still not fully understood. The Sentinel-3A satellite is poised to play an important role in shedding new light on this exchange.

Initially, the fact that the oceans are absorbing a significant amount of the carbon dioxide we pump into the atmosphere by burning biomass and fossil fuels would appear to be a good thing. However, as more carbon dioxide dissolves into the oceans, it leads to ocean acidification, making it difficult for some marine life to survive.

Monitoring and understanding the carbon cycle is important because carbon is the fundamental building block of all living organisms. Also, the process of carbon moving between the oceans, atmosphere, land and ecosystems helps to control our climate.

Over the last four years an international team of scientists and engineers have been using satellites along with measurements from ships and pioneering cloud computing techniques to study how carbon dioxide is transferred from the atmosphere into the oceans.

Their new work, published in the Journal of Atmospheric and Oceanic Technology, reveals that the seas around Europe absorb an astonishing 24 million tonnes of carbon each year. This is equivalent in weight to two million double decker buses or 72 000 Boeing 747s.

The team are making their data and cloud computing tools, the 'FluxEngine', available to the international scientific community so that other groups can analyse the data for themselves.

They hope that making tools like this available to everyone will improve the transparency and traceability of climate studies. It should also help to accelerate scientific advancement in this important area.

Jamie Shutler from the University of Exeter said, "The information we are gathering using satellites is essential for monitoring our climate, but these observations are not always easily available for other scientists to use.

"This new development means that anyone can use our cloud tools and data to support their own research."

They are also now looking to Europe's Copernicus Sentinel satellites to provide vital information for this area of research.

Sentinel-3A was launched on 16 February and once commissioned for service it will measure the temperature of the sea surface, currents, winds, waves and other biochemical factors.

The unique aspect of Sentinel-3A is that its instruments make simultaneous measurements, providing overlapping data products that carry vital information to estimate carbon dioxide 'fluxes'.

To calculate the flux of gases between the ocean and the atmosphere, it is necessary to know the solubility of carbon dioxide in the seawater, together with the speed of gas transfer.

Importantly, the solubility is determined by a combination of sea-surface temperature and salinity, while the ocean surface wind and wave environment govern the speed at which carbon dioxide is transferred.

All this information from just one satellite makes the Sentinel-3 mission a near-perfect tool to estimate the exchange of carbon dioxide between the atmosphere and the global ocean, as well as seasonal, year-to-year and regional patterns in the exchange.

ESA's Sentinel-3 mission scientist, Craig Donlon, said, "The use of satellite data to provide a more informed and complete set of baseline data is helping to improve our understanding of carbon cycling.

"The ability for individual scientists to run and rerun their own flux calculations is a new and powerful way of working together in an open science world."

While satellites enable us to monitor the global oceans easily, shipboard measurements remain essential because we can't monitor everything from space.

Andy Watson, also from the University of Exeter, commented, "Good knowledge of the ocean uptake and release of carbon dioxide is essential for predicting climate change. Eventually, most of the carbon dioxide we release will find its way into the oceans.

"This project will provide the most accurate estimates that we have and is accessible to anyone."

Science Paper: FluxEngine: A flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oceanflux Greenhouse Gases Evolution
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Intense deep-ocean turbulence in equatorial Pacific could help drive global circulation
New Orleans LA (SPX) Feb 23, 2016
Waves crashing on the equatorial seafloor generate centimeter-scale turbulence that is crucial for driving ocean circulation on a global scale, Stanford scientists say. The findings, presented this week at the annual American Geophysical Union Ocean Sciences conference and recently published online in the journal Geophysical Research Letters, could eventually be incorporated into global cl ... read more


WATER WORLD
New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

WATER WORLD
Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

Footprints of a martian flood

Russia plans return to Mars, Moon despite money woes

WATER WORLD
Alpha Centauri: Our First Target for Interstellar Probes

Orion Simulations Help Engineers Evaluate Mission Operations for Crew

Orion Test Hardware in Position for Solar Array Test

India plans to launch 60 space missions in 5 years

WATER WORLD
China's moon lander Chang'e-3 enters 28th lunar day

Staying Alive on Tiangong 2

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

WATER WORLD
Orbital ATK Completes OA-4 Cargo Delivery Mission to ISS for NASA

Scott Kelly returns to earth, but science for NASA's journey to Mars continues

Send your computer code into space with astronaut Tim Peake

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

WATER WORLD
SpaceX warns of failure in Wednesday's rocket landing

SpaceX postpones rocket launch until Thursday

Russian rocket engines ban could leave US space program in limbo

Launcher and satellite preparations continue for Ariane 5's mission with EUTELSAT 65 West A

WATER WORLD
Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

Astronomers take images of an exoplanet changing over time

WATER WORLD
Real or virtual - can we tell the difference

Breakthrough in dynamically variable negative stiffness structures

Study shows dried plums provide protection from bone loss due to radiation

Russian Space Intelligence Center to Receive New Radars









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.