. 24/7 Space News .
STELLAR CHEMISTRY
Second-generation stars identified, giving clues about their predecessors
by Staff Writers
Notre Dame IN (SPX) Dec 07, 2016


The figure shows a sub-population of ancient stars, called Carbon-Enhanced Metal-Poor (CEMP) stars. These stars contain 100 to 1,000,000 times LESS iron (and other heavy elements) than the Sun, but 10 to 10,000 times MORE carbon, relative to iron. The unusual chemical compositions of these stars provides clues to their birth environments, and the nature of the stars in which the carbon formed. In the figure, A(C) is the absolute amount of carbon, while the horizontal axis represents the ratio of iron, relative to hydrogen, compared with the same ratio in the Sun. Image courtesy University of Notre Dame. For a larger version of this image please go here.

University of Notre Dame astronomers have identified what they believe to be the second generation of stars, shedding light on the nature of the universe's first stars.

A subclass of carbon-enhanced metal-poor (CEMP) stars, the so-called CEMP-no stars, are ancient stars that have large amounts of carbon but little of the heavy metals (such as iron) common to later-generation stars.

Massive first-generation stars made up of pure hydrogen and helium produced and ejected heavier elements by stellar winds during their lifetimes or when they exploded as supernovae. Those metals - anything heavier than helium, in astronomical parlance - polluted the nearby gas clouds from which new stars formed.

Jinmi Yoon, a postdoctoral research associate in the Department of Physics; Timothy Beers, the Notre Dame Chair in Astrophysics; and Vinicius Placco, a research professor at Notre Dame, along with their collaborators, show in findings published in the Astrophysics Journal this week that the lowest metallicity stars, the most chemically primitive, include large fractions of CEMP stars.

The CEMP-no stars, which are also rich in nitrogen and oxygen, are likely the stars born out of hydrogen and helium gas clouds that were polluted by the elements produced by the universe's first stars.

"The CEMP-no stars we see today, at least many of them, were born shortly after the Big Bang, 13.5 billion years ago, out of almost completely unpolluted material," Yoon says. "These stars, located in the halo system of our galaxy, are true second-generation stars - born out of the nucleosynthesis products of the very first stars."

Beers says it's unlikely that any of the universe's first stars still exist, but much can be learned about them from detailed studies of the next generation of stars.

"We're analyzing the chemical products of the very first stars by looking at what was locked up by the second-generation stars," Beers says.

"We can use this information to tell the story of how the first elements were formed, and determine the distribution of the masses of those first stars. If we know how their masses were distributed, we can model the process of how the first stars formed and evolved from the very beginning."

The authors used high-resolution spectroscopic data gathered by many astronomers to measure the chemical compositions of about 300 stars in the halo of the Milky Way. More and heavier elements form as later generations of stars continue to contribute additional metals, they say.

As new generations of stars are born, they incorporate the metals produced by prior generations. Hence, the more heavy metals a star contains, the more recently it was born. Our sun, for example, is relatively young, with an age of only 4.5 billion years.

A companion paper, titled "Observational constraints on first-star nucleosynthesis. II. Spectroscopy of an ultra metal-poor CEMP-no star," of which Placco was the lead author, was also published in the same issue of the journal this week.

The paper compares theoretical predictions for the chemical composition of zero-metallicity supernova models with a newly discovered CEMP-no star in the Milky Way galaxy.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Notre Dame
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
UCLA astronomers watch star clusters spewing out dust
Los Angeles CA (SPX) Dec 02, 2016
Galaxies are often thought of as sparkling with stars, but they also contain gas and dust. Now, a team led by UCLA astronomers has used new data to show that stars are responsible for producing dust on galactic scales, a finding consistent with long-standing theory. Dust is important because it is a key component of rocky planets such as Earth. Jean Turner, a UCLA professor in the departme ... read more


STELLAR CHEMISTRY
Space gardener Shane Kimbrough enjoys first of multiple harvests

Space Has Potholes Too!

Space freighter burns up after launch to to ISS: Russia

Cold plasma freshens up French fries

STELLAR CHEMISTRY
Three months after rocket explosion SpaceX plans to fly again

Arianespace's Vega scores its eighth success in orbiting Gokturk-1 for Turkey

Russia seeks answers on ISS cargo ship crash

Russian authorities inspecting crashed spacecraft debris

STELLAR CHEMISTRY
Swiss firm acquires Mars One private project

Europe okays 1.4 bn euros for Mars rover, ISS

Climate cycles may explain how running water carved Mars' surface features

NASA Radio on Europe's New Mars Orbiter Aces Relay Test

STELLAR CHEMISTRY
Space exploration plans unveiled

Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

China launches 4th data relay satellite

STELLAR CHEMISTRY
European ministers ready ESA for a United Space in Europe in the era of Space 4.0

Nordic entrepreneurial spirit boosted by space

LeoSat and Globalsat Group Sign Strategic Worldwide Agreement

India's Space Program Makes Steady Gains

STELLAR CHEMISTRY
Orbital ATK to develop critical technology for in-orbit assembly

NASA awards contract for refueling mission spacecraft

Shape matters when light meets atom

New technology of ultrahigh density optical storage researched at Kazan University

STELLAR CHEMISTRY
Meta musings on the origins of life

ALMA measures size of seeds of planets

Could There Be Life in Pluto's Ocean?

Biologists watch speciation in a laboratory flask

STELLAR CHEMISTRY
New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.