Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Quantum superconductor-metal to glass transition observed
by Staff Writers
Moscow, Russia (SPX) Apr 19, 2014


File image.

The article "Collapse of superconductivity in a hybrid tin-grapheme Josephson junction array'" (authors: Zheng Han, Adrien Allain, Hadi Arjmandi-Tash,Konstantin Tikhonov, Mikhail Feigelman, Benjamin Sacepe,Vincent Bouchiat, published in Nature Physics on March 30, 2014, DOI:10.1038/NPHYS2929) presents the results of the first experimental study of the graphene-based quantum phase transition of the "superconductor-to-metal" type, i.e. transformation of the system's ground state from superconducting to metallic, upon changing the electron concentration in graphene sheet.

The system is a regular array of tin nanodisks (the radius of each disk is 200 nm) situated on a graphene substrate. Tin becomes a superconductor at temperatures lower than T0 = 3.5 degrees Kelvin. Tin nanodiscs electrically contact with each other due to electronic conductivity through graphene.

At temperatures significantly below T0 the state of the nanodisk can be characterized by a single variable - "phase," defined in the period from 0 to 2p. Due to the transfer of Cooper pairs of electrons between nanodiscs the so-called Josephson junctions are formed, which seek to establish a coherent superconducting state with uniform nanodisk phases across the entire lattice.

Graphene allows to gradually change the density of conduction electrons in it by changing the voltage on the electrostatic gate, and thus the strength of Josephson junctions between tin nanodiscs. Phase correlations among nanodiscs are destroyed by thermal fluctuations at temperatures above the critical temperature Tc.

At high density of conduction electrons in graphene the measured value Tc (around 0.5-0.7 K) is in good agreement with the previously developed theory, published in the article by Feigel'man, M.; Skvortsov, M. and Tikhonov, K. Theory of proximity-induced superconductivity in graphene, Solid State Communications, *149*, 1101 - 1105 (2009).

Upon lowering the electron density of grapheme the energies of Josephson junctions weaken due to increase in the resistance of graphene, and the temperature of transition into coherent state drops sharply to below the minimum temperature of the experiment (60 mK).

In other words, the spatial phase coherence between different individual nanodisks is destroyed solely by quantum (independent of temperature) phase fluctuations. As a result, superconductor-to-metal quantum phase transition takes place.

First approach to the theory of such a phase transition have previously been developed in the paper Feigel'man, M.; Larkin A. and Skvortsov, M. "Quantum superconductor-metal transition in a proximity array," Physical Review Letters *86* 1869, (2001).

In the domain of lowest measurable temperatures the resistance of the studied array turns out to be nearly temperature-independent, and, at the same time, it is an exponentially sharp function of voltage on the electric back-gate; this observation is yet to be explained as no complete theory is capable of describing it at present.

In addition to the above-mentioned superconductor-to-metal transition, the authors discovered the so-called "superconducting glass" state, which is created as a result of disorder and frustration in the Josephson junctions, but nevertheless corresponds to some of the minima of the total energy of the Josephson junctions array. Here, the controlling parameter is the strength of external magnetic field.

Competition of periodic dependency on the magnitude of magnetic flux through the elementary cell of the nanodisk lattice and random dependency on the same parameter (due to mesoscopic fluctuations) leads to a phase diagram of the "re-entrant" type.

Namely, the magnitude of the maximum superconducting current that flows through the entire lattice depends non-monotonically upon an external magnetic field; first it decreases (all the way down to zero), and then reappears with the increase of the magnetic field in a certain range of its values.

.


Related Links
Moscow Institute of Physics and Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Cork trees offer greener source of polyester
Washington DC (SPX) Apr 17, 2014
On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out how to extract a natural, waterproof, antibacterial version of the first material from the latter. Their new technique, which could have applications in medical devices, appears in the ACS jour ... read more


TECH SPACE
Russian Federal Space Agency is elaborating Moon exploration program

Science, Discovery Channels to broadcast private race to the moon

Take the Plunge: LADEE Impact Challenge

Land a Lunar Laser Reflector Now!

TECH SPACE
Mars' halcyon times may have been fleeting

Gusev Crater once held a lake after all

Mars Exploration in a Deep Mine

Images From NASA Mars Rover Include Bright Spots

TECH SPACE
Veggie Will Expand Fresh Food Production on ISS

Reporters See NASA's Latest High Tech Exploration Tool Before Testing

Recycling astronaut urine for energy and drinking water

Orion Avionics System Ready for First Test Flight

TECH SPACE
China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

TECH SPACE
'Cherry tree from space' mystery baffles Japan

Extra-terrestrial Tweet-up links Tokyo with space

Russian cargo ship docks to space station

Progress Departs, New Cargo Ships Awaiting Launch

TECH SPACE
NASA Ames Launches Nanosatellites, Science Experiments on SpaceX Rocket

On-board camera provides a unique perspective on Arianespace Flight VS07

The DZZ-HR satellite is fueled for Arianespace's upcoming Vega launch

EUTELSAT 3B Mission Status Update

TECH SPACE
Chance meeting creates celestial diamond ring

Faraway Moon or Faint Star? Possible Exomoon Found

The Importance of Planetary Plumes

Orbital physics is child's play with 'Super Planet Crash'

TECH SPACE
New Self-healing Plastics Developed

Deep sea rocks may be future source for rare earth metals

New technique takes cues from astronomy and ophthalmology to sharpen microscope images

Cork trees offer greener source of polyester




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.