. 24/7 Space News .
STELLAR CHEMISTRY
Scientists model universe with Full General Relativity
by Staff Writers
Cleveland OH (SPX) Jun 28, 2016


While simulations of the universe and the structures within it have been the subject of scientific discovery for decades, these codes have made some simplifications or assumptions. These two codes are the first to use Einstein's complete theory of general relativity to account for the effects of the clumping of matter in some regions and the dearth of matter in others.

Research teams on both sides of the Atlantic have shown that precise modeling of the universe and its contents will change the detailed understanding of the evolution of the universe and the growth of structure in it.

One hundred years after Einstein introduced general relativity, it remains the best theory of gravity, the researchers say, consistently passing high-precision tests in the solar system and successfully predicting new phenomena such as gravitational waves, which were recently discovered by the Laser Interferometer Gravitational-Wave Observatory.

The equations of general relativity, unfortunately, are notoriously difficult to solve. For the past century, physicists have used a variety of assumptions and simplifications in order to apply Einstein's theory to the universe.

On Earth, that's something like averaging the music made by a symphony. The audience would hear a single average note, keeping the overall beat, growing generally louder and softer rather than the individual notes and rhythms of each of the orchestra's instruments.

Wanting details and their effects, U.S. and European teams each wrote computer codes that will eventually lead to the most accurate possible models of the universe and provide new insights into gravity and its effects.

While simulations of the universe and the structures within it have been the subject of scientific discovery for decades, these codes have made some simplifications or assumptions. These two codes are the first to use Einstein's complete theory of general relativity to account for the effects of the clumping of matter in some regions and the dearth of matter in others.

Both groups of physicists were trying to answer the question of whether small-scale structures in the universe produce effects on larger distance scales. Both confirmed that's the case, though neither has found qualitative changes in the expansion of the universe as some scientists have predicted.

"Both we and the other group examine the universe using the full theory of general relativity, and have therefore been able to create more accurate models of physical processes than have been done before," said James Mertens, a physics PhD student at Case Western Reserve University who took the lead in developing and implementing the numerical techniques for the U.S. team.

Mertens worked with John T. Giblin Jr., the Harvey F. Lodish Development Professor of Natural Science at Kenyon College and an adjunct associate professor of physics at Case Western Reserve; and Glenn Starkman, professor of physics and director of the Institute for the Science of Origins at Case Western Reserve. They submitted two manuscripts describing their work to the arXiv preprint website on Nov. 3, 2015.

Less than two weeks later, Marco Bruni, reader in cosmology and gravitation at the University of Portsmouth, England, and Eloisa Bentivegna, Senior Researcher and Rita Levi Montalcini Fellow at the University of Catania, Italy, submitted a similar study.

Letters by the two groups appear back-to-back in the June 24th issue of Physical Review Letters, and the U.S. group has a second paper giving more of the details in the issue of Physical Review D to be published on the same day. The work will be highlighted as an Editors' Suggestion in Letters and in a Synopsis on the American Physical Society Physics website.

The researchers say computers employing the full power of general relativity are the key to producing more accurate results and perhaps new or deeper understanding.

"No one has modeled the full complexity of the problem before," Starkman said. "These papers are an important step forward, using the full machinery of general relativity to model the universe, without unwarranted assumptions of symmetry or smoothness. The universe doesn't make these assumptions, neither should we."

Both groups independently created software to solve the Einstein field equations, which describe the complicated interrelationships between the contents of the universe and the curvature of space and time, at billions of places and times over the history of the universe.

Comparing the outcomes of these numerical simulations of the correct nonlinear dynamics to the outcomes of traditional simplified linear models, the researchers found that approximations break down.

"By assuming less, we're seeing something new," Giblin said.

Bentivegna said that their preliminary applications of numerical relativity have shown how and by how much approximations miss the correct answers. More importantly, she said, "This will allow us to comprehend a larger class of observational effects that are likely to emerge as we do precision cosmology."

"There are indeed several aspects of large-scale structure formation (and their consequences on, for example, the cosmic microwave background) which call for a fully general relativistic approach," said Sabino Matarrese, professor of physics and astronomy at the University of Padua, who was not involved in the studies.

This approach will also provide accuracy and insight to such things as gravitational lensing maps and studying the cross-correlation among different cosmological datasets, he added.

The European team found that perturbations reached a "turnaround point" and collapsed much earlier than predicted by approximate models. Comparing their model to the commonly assumed homogeneous expansion of the universe, local deviations in an underdensity (a region with less than the average amount of matter) reached nearly 30 percent.

The U.S. team found that inhomogeneous matter generates local differences in the expansion rate of an evolving universe, deviating from the behavior of a widely used approximation to the behavior of space and time, called the Friedmann-Lemaitre-Robertson-Walker metric.

Stuart L. Shapiro, professor of physics and astronomy at the University of Illinois at Urbana-Champaign, is among the acknowledged leaders of solving Einstein's equations on the computer. "These works are important, not only for the new results that they report, but also for being forerunners in the application of numerical relativity to long-standing problems in cosmology," said Shapiro, who was not involved in the studies.

No longer restricted by the assumptions, researchers must abandon some traditional approaches, he continued, "and these papers begin to show us the way."

Bruni said galaxy surveys coming in the next decade will provide new high-precision measurements of cosmological parameters and that theoretical predictions must be equally precise and accurate.

"Numerical relativity simulations apply general relativity in full and aim precisely at this high level of accuracy," he said. "In the future they should become the new standard, or at least the benchmark for any work that makes simplifying assumptions."

Both teams are continuing to explore aspects of the universe using numerical relativity and enhancing their codes.

Bentivegna and Bruni used the Einstein Toolkit, which is open-source, to develop theirs. The U.S. team created CosmoGRaPH and will soon make the software open-source. Both codes will be available online for other researchers to use and improve.

* "Departures from the FLRW Cosmological Model in an Inhomogeneous Universe: A Numerical Examination," John T. Giblin Jr., James B. Mertens and Glenn D. Starkman, 2016 June 24, Physical Review Letters

* "Integration of Inhomogeneous Cosmological Spacetimes in the BSSN Formalism," James B. Mertens, John T. Giblin Jr. and Glenn D. Starkman, 2016 June 24, Physical Review D

* "Effects of Nonlinear Inhomogeneity on the Cosmic Expansion with Numerical Relativity," Eloisa Bentivegna and Marco Bruni, 2016 June 24, Physical Review Letters


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Case Western Reserve University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Let there be light
Salt Lake City UT (SPX) Jun 22, 2016
University of Utah materials science and engineering associate professor Mike Scarpulla wants to shed light on semiconductors - literally. Scarpulla and senior scientist Kirstin Alberi of the National Renewable Energy Laboratory in Golden, Colorado, have developed a theory that adding light during the manufacturing of semiconductors - the materials that make up the essential parts of computer ch ... read more


STELLAR CHEMISTRY
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

STELLAR CHEMISTRY
Opportunity is on its Final Science Campaign at 'Marathon Valley'

NASA Weighs Use of Rover to Image Potential Mars Water Sites

ChemCam findings hint at oxygen-rich past on Mars

Curiosity rover analysis suggests Mars has oxygen-rich history

STELLAR CHEMISTRY
Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

STELLAR CHEMISTRY
Chinese Space Garbageman is not a Weapon

China launches new carrier rocket: state media

China's new launch center to get new viewing areas

United Nations and China agree to increased space cooperation

STELLAR CHEMISTRY
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

STELLAR CHEMISTRY
India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

Purdue experiment aboard Blue Origin suborbital rocket a success

STELLAR CHEMISTRY
When it comes to brown dwarfs, 'how far?' is a key question

Newborn Planet Discovered Around Young Star

NASA's K2 Finds Newborn Exoplanet Around Young Star

"Electric Wind" Can Strip Earth-Like Planets of Oceans and Atmospheres

STELLAR CHEMISTRY
Airbus Defence and Space top construct new clean rooms in Poland

SSL Satellite For Dish Begins Post-Launch Maneuvers According To Plan

Measuring Planck's constant, NIST's watt balance brings world closer to new kilogram

New antenna brings enhanced capabilities to the battlefield









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.