Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



EARTH OBSERVATION
Scientists link California droughts and floods to distinctive atmospheric waves
by Staff Writers
Boulder CO (SPX) Apr 10, 2017


The high- and low-pressure regions of wavenumber-5 set up in different locations during January 2014, when California was enduring a drought, and January 2017, when it was facing floods. The location of the high and low pressure regions (characterized by anticylonic vs. cyclonic upper-level air flow) can act to either suppress or enhance precipitation and storms. The black curves illustrate the jet streams that trap and focus wavenumber-5. Image courtesy Haiyan Teng and Grant Branstator.

The crippling wintertime droughts that struck California from 2013 to 2015, as well as this year's unusually wet California winter, appear to be associated with the same phenomenon: a distinctive wave pattern that emerges in the upper atmosphere and circles the globe.

Scientists at the National Center for Atmospheric Research (NCAR) found in a recent study that the persistent high-pressure ridge off the west coast of North America that blocked storms from coming onshore during the winters of 2013-14 and 2014-15 was associated with the wave pattern, which they call wavenumber-5. Follow-up work showed that wavenumber-5 emerged again this winter but with its high- and low-pressure features in a different position, allowing drenching storms from the Pacific to make landfall.

"This wave pattern is a global dynamic system that sometimes makes droughts or floods in California more likely to occur," said NCAR scientist Haiyan Teng, lead author of the California paper. "As we learn more, this may eventually open a new window to long-term predictability."

The finding is part of an emerging body of research into the wave pattern that holds the promise of better understanding seasonal weather patterns in California and elsewhere. Another new paper, led by NCAR scientist Grant Branstator, examines the powerful wave pattern in more depth, analyzing the physical processes that help lead to its formation as well as its seasonal variations and how it varies in strength and location.

The California study was published in the Journal of Climate while the comprehensive study into the wave patterns is appearing in the Journal of the Atmospheric Sciences. Both papers were funded by the National Science Foundation, which is NCAR's sponsor, as well as by the Department of Energy, the National Oceanic and Atmospheric Administration, and NASA.

The new papers follow a 2013 study by Teng and Branstator showing that a pattern related to wavenumber-5 tended to emerge about 15-20 days before major summertime heat waves in the United States.

Strong impacts on local weather systems
Wavenumber-5 consists of five pairs of alternating high- and low-pressure features that encircle the globe about six miles (10 kilometers) above the ground. It is a type of atmospheric phenomenon known as a Rossby wave, a very large-scale planetary wave that can have strong impacts on local weather systems by moving heat and moisture between the tropics and higher latitudes as well as between oceanic and inland areas and by influencing where storms occur.

The slow-moving Rossby waves at times become almost stationary. When they do, the result can be persistent weather patterns that often lead to droughts, floods, and heat waves. Wavenumber-5 often has this stationary quality when it emerges during the northern winter, and, as a result, is associated with a greater likelihood of persistent extreme events.

To determine the degree to which the wave pattern influenced the California drought, Teng and Branstator used three specialized computer models, as well as California rainfall records and 20th century data about global atmospheric circulation patterns. The different windows into the atmosphere and precipitation patterns revealed that the formation of a ridge by the California coast is associated with the emergence of the distinctive wavenumber-5 pattern, which guides rain-producing low-pressure systems so that they travel well north of California.

Over the past winter, as California was lashed by a series of intense storms, wavenumber-5 was also present, the scientists said. But the pattern had shifted over North America, replacing the high-pressure ridge off the coast with a low-pressure trough. The result was that the storms that were forced north during the drought winters were, instead, allowed to make landfall.

Clues to seasonal weather patterns
Forecasters who predict seasonal weather patterns have largely looked to shifting sea surface temperatures in the tropical Pacific, especially changes associated with El Nino and La Nina. But during the dry winters of 2013-14 and 2014-15, those conditions varied markedly: one featured the beginning of an El Nino while the sea surface temperatures during the other were not characteristic of either El Nino or La Nina.

The new research indicates that the wave pattern may provide an additional source of predictability that sometimes may be more important than the impacts of sea surface temperature changes. First, however, scientists need to better understand why and when the wave pattern emerges.

In the paper published in Journal of the Atmospheric Sciences, Branstator and Teng explored the physics of the wave pattern. Using a simplified computer model of the climate system to identify the essential physical processes, the pair found that wavenumber-5 forms when strong jet streams act as wave guides, tightening the otherwise meandering Rossby wave into the signature configuration of five highs and five lows.

"The jets act to focus the energy," Branstator said. "When the jets are present, the energy is trapped and cannot escape." But even when the jets are present, the wavenumber-5 pattern does not always form, indicating that other forces requiring study are also at play.

The scientists also searched specifically for what might have caused the wave pattern linked to the severe California drought to form. In the paper published in the Journal of Climate, the pair found that extremely heavy rainfall from December to February in certain regions of the tropical Pacific could double the probability that the extreme ridge associated with wavenumber-5 will form. The reason may have to do with the tropical rain heating parts of the upper atmosphere in such a way that favors the formation of the wavenumber-5 pattern.

But the scientists cautioned that many questions remain.

"We need to search globally for factors that cause this wavenumber-5 behavior," Teng said, "Our studies are just the beginning of that search."

EARTH OBSERVATION
As CO2 levels increase, airplane rides get bumpier
Washington (UPI) Apr 6, 2017
Climate change has a variety of unexpected consequences. The latest: airplane turbulence. Warmer air and higher concentrations of CO2 are affecting the movement of jet streams in the atmosphere. As the climate continues to warm, researchers expect instances of turbulence to increase. Scientists used supercomputers to simulate the changes in air movement at cruising altitudes. The ... read more

Related Links
University Corporation for Atmospheric Research
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
US astronaut John Glenn is buried with military honors

Russia, Europe, US Should Work Together on Space Exploration - German Agency

The long legacy of space-farming leading us to Mars

US, Russia Have Opportunities for Expanding Space Cooperation Despite Tensions

EARTH OBSERVATION
US Hardware Production Begins for Money-Saving Next-Generation Rockets

'Fuzzy' fibers can take rockets' heat

Flight Tests of Super-Heavy Angara-A5V Carrier Rocket May Start in 2027

Kremlin Believes Russia Can Compete With Private Firms Like SpaceX in Space

EARTH OBSERVATION
New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

Prolific Mars Orbiter Completes 50,000 Orbits

Final two ExoMars landing sites chosen

EARTH OBSERVATION
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

EARTH OBSERVATION
Ukraine Plans to Launch Telecom Satellite in Fourth Quarter of 2017

Russia Offering Brazil to Develop Gonets-Like Satellite System - Manufacturer

Intelsat-OneWeb Merger: Enhanced Connections for Government Users

Vietnam set to produce satellites by 2022

EARTH OBSERVATION
Despite EU fines, Greece struggling to promote recycling

Granites could solve riddle of pinpointing metals crucial for low carbon tech

Seaweed: From superfood to superconductor

More annual shareholder meetings go virtual in US

EARTH OBSERVATION
Exoplanet mission gets ticket to ride

Inside Arctic ice lies a frozen rainforest of microorganisms

Astronomers confirm atmosphere around the super-Earth

TRAPPIST-1 flares threaten possibility of habitability on surrounding exoplanets

EARTH OBSERVATION
Neptune's movement from the inner to the outer solar system was smooth and calm

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target

ANU leads public search for Planet X




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement