Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Scientists gain insight into origin of tungsten-ditelluride's magnetoresistance
by Staff Writers
Chicago IL (SPX) Oct 22, 2015


A team of researchers from Argonne's Materials Science Division and Northern Illinois University, working collaboratively with researchers at Argonne's Center for Nanoscale Materials, report two new findings on WTe2: (1) WTe2 is electronically 3-D with a mass anisotropy as low as 2, and (2) the mass anisotropy varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. The results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition. Image courtesy Argonne National Laboratory. For a larger version of this image please go here.

Scientists recently discovered that tungsten ditelluride (WTe2) is electronically three-dimensional with a low anisotropy. Anisotropy reflects the change in properties of a material when the direction of the current or the applied magnetic field is varied.

Similar to graphite consisting of weakly bound graphene layers, WTe2 is a layered material that could be reduced to few layers in thickness or a monolayer and be used in making nanoscale transistors in other electronics. The material was originally thought to be two-dimensional in nature because of the ease with which its layers could be separated.

WTe2 has been the subject of increased scientific interest since a 2014 research study outlined its unusual magnetoresistance, which is the ability of a material to change the value of its electrical resistance when subjected to an external magnetic field.

This particular finding "is interesting in its own right because it shows that the mechanical and electrical properties of a material are not always as closely linked as we may assume," wrote Kamran Behnia, director of quantum matter research at Le Centre National de la Recherche Scientifique in Paris, in an opinion piece on the latest research discovery about WTe2 published in journal Physics, which provides news and commentary on select papers from American Physical Society journals.

Researchers also discovered that the anisotropy of WTe2 varies and displays the magnetoresistance behavior of the Fermi liquid state, which is a theoretical model that describes the normal state of most metals at sufficiently low temperatures.

"In addition to its small values, we found that the anisotropy also varies with temperature and follows the magnetoresistance behavior. This implies a possible temperature induced change in the electronic structure of this material," said Argonne's Zhili Xiao, who led this research.

"These findings are important for accurately understanding the electronic properties of WTe2 and other extremely magnetoresistance materials."

The research is described in "Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe2," published in Physical Review Letters. The paper's co-authors are L.R. Thoutam and Z.L Xiao of Argonne MSD and Northern Illinois University; Y.L. Wang and W.K. Kwok of Argonne MSD; S. Das, A. Luican-Mayer and R. Divan of Argonne's Center for Nanoscale Materials; and G.W. Crabtree of Argonne MSD and the University of Illinois at Chicago.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Argonne National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Super-slick material makes steel better, stronger, cleaner
Boston MA (SPX) Oct 22, 2015
Steel is ubiquitous in our daily lives. We cook in stainless steel skillets, ride steel subway cars over steel rails to our offices in steel-framed building. Steel screws hold together broken bones, steel braces straighten crooked teeth, steel scalpels remove tumors. Most of the goods we consume are delivered by ships and trucks mostly built of steel. While various grades of steel have bee ... read more


TECH SPACE
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

TECH SPACE
Martian skywatchers provide insight on atmosphere, protect orbiting hardware

Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

TECH SPACE
Charles Elachi to retire as JPL Director

From science fiction to reality - sonic tractor beam invented

Study solves mysteries of Voyager 1's journey into interstellar space

NASA Marks Completion of Test Version of Key SLS Propulsion System

TECH SPACE
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

TECH SPACE
NASA astronauts get workout in marathon spacewalk

Between the Ears: International Space Station Examines the Human Brain

High-Tech Methods Study Bacteria on the International Space Station

Astronaut Scott Kelly to break US spaceflight record

TECH SPACE
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

TECH SPACE
Spirals in dust around young stars may betray presence of massive planets

The Exoplanet Era

Scientists Predict that Rocky Planets Formed from "Pebbles"

NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

TECH SPACE
Ants: Both solid-like and liquid-like

Coating cancels acoustic scattering from odd-shaped objects

Nanoquakes probe new 2-dimensional material

Scientists gain insight into origin of tungsten-ditelluride's magnetoresistance




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement