Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Scientists find solution to two long-standing mysteries of cuprate superconductivity
by Staff Writers
Upton NY (SPX) May 14, 2014


Disappearing stripes linked with free electron movement: Scientists used a precision microscope to simultaneously explore electrons' arrangements and movements as charge carriers called holes were added to transform a copper-oxide material from an insulator to a superconductor. Image courtesy Brookhaven National Laboratory.

Scientists seeking to understand the intricacies of high-temperature superconductivity-the ability of certain materials to carry electrical current with no energy loss-have been particularly puzzled by a mysterious phase that emerges as charge carriers are added that appears to compete with superconductivity.

It's also been a mystery why, within this "pseudogap" phase, the movement of superconducting electrons appears to be restricted to certain directions. So exploring the pseudogap and whether and how it affects the movement of electrons has been a pivotal challenge.

Now, a team lead by scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University have used unique capabilities to reveal detailed characteristics of the electrons in one of these materials as it transforms from an insulator through the mysterious pseudogap phase and eventually into a full-blown superconductor.

The results, described in the May 9, 2014, issue of Science, link two distinct personality changes in the material's electrons: the disappearance of a rather exotic periodic static arrangement of certain electrons within the pseudogap phase, and the sudden ability of all the material's electrons to move freely in any direction.

The finding strengthens support for the idea that the periodic arrangement-variously referred to as "stripes" or "density waves"-restricts the flow of electrons and impairs maximal superconductivity in the pseudogap phase.

"This is the first time an experiment has directly linked the disappearance of the density waves and their associated nanoscale crystal distortions with the emergence of universally free-flowing electrons needed for unrestricted superconductivity," said lead author J.C. Seamus Davis, a senior physicist and Director of DOE's Center for Emergent Superconductivity at Brookhaven Lab and also a professor at both Cornell University and the St. Andrews University in Scotland. "These new measurements finally show us why, in the mysterious pseudogap state of this material, the electrons are less free to move."

That information, in turn, may help scientists engineer ways to get superconductivity flowing under more favorable conditions. Right now, even these "high-temperature" copper-oxide materials operate as superconductors only when cooled to below -100 degrees Celsius.

"That's room temperature during a particularly bad winter in Antarctica," Davis said. The hope is to find ways to raise the operating temperature for real-world energy-saving applications-things like highly efficient power generation and transmission and computers that work at speeds thousands of times faster than today's.

Unique tool tracks electronic states
In their native state, even at super chilly temperatures, the copper-oxide materials are actually strong insulators. To induce them to superconduct, the scientists chemically inject additional electronic carriers, a process called doping. But tracking how this process alters the electronic structure and associated nanoscale distortions as the material transforms from insulator to pseudogap phase and eventually full-blown superconductivity is no easy task.

"The crystal distortions appear in our experiments like the ghostly, smeary shadows that a moving person makes in a long photographic exposure, making it difficult to really recognize their features and their character, or even see them at all in many cases," said Simon Billinge, a Brookhaven physicist who heads a team exploring the role of such nanoscale fluctuations in superconductors and other complex materials. "We are only now developing tools and methods to see and track these subtle effects."

To capture the elusive electronic behavior, Chung-Koo Kim, a postdoctoral fellow in Billinge's group, and Kazuhiro Fujita, a Research Associate in Davis' Group, worked with Davis using a spectroscopic imaging scanning tunneling microscope invented by the latter. This tool allows the scientists to simultaneously visualize the spatial arrangements of individual static electrons and the direction of travel of those that are free to move. They systematically scanned the copper-oxide material under various levels of doping to see how the arrangements and behavior of the electrons changed as the material evolved.

Davis likens the technique to flying over a frozen river where you can see static patterns formed by the ice while also detecting flowing liquid water-and doing it over and over through the spring as the frozen waterway gradually melts. In the copper-oxide material, instead of raising the temperature, the scientists raise the level of doping to "melt" the density waves at a particular "critical point."

"This was a massive effort, taking many person-years, making long and difficult measurements on multiple samples to track the evolution of these two effects," Davis said.

Evidence of electron personality change
At low charge carrier density, the microscopic flyovers revealed somewhat static, ordered electrons-the "frozen" stripe patterns-and the flow of superconducting electrons limited to only certain directions.

But subsequent scans taken as more charge carriers were added revealed that the static pattern disappeared and electrons began to flow freely in all directions at exactly the same level of doping-close to the point at which the most robust superconductivity sets in.

"This is the first direct observation that these two phenomena are linked: The density waves with their associated nanoscale distortions disappear and the electrons in the material change their personality suddenly at a well-defined material composition," Billinge said.

This direct observation confirms a long-held suspicion that the static electron arrangement and associated nanoscale fluctuations impair the free flow of electrons-like ice on a river impairs the flow of liquid water, Davis said. By analogy, adding charge carriers breaks up the static pattern, like melting the ice.

"We are demonstrating that when the electrons are no longer hampered by the 'frozen' density wave state, they become universally free to flow unimpeded," Davis said.

Another way to look at it, Billinge said, is by thinking of a chess game with kings, bishops, and knights filling the board so none can move. As you gradually remove some of the pieces-analogous to doping with charge carriers called "holes," which is what the scientists did-some of the pieces would be free to move according to their usual rules. More holes would allow more movement.

But what the scientists observed instead is that at low "hole" concentration, certain kinds of movement (say, the kings' forward and sideways movements) were prohibited and that the chessboard itself appeared to have a different kind of pattern-stripes instead of alternating squares. But at the critical hole concentration-precisely 20 percent-the researchers found that both the quantum rules-of-the-game and the board itself changed, allowing the free movement of all pieces.

Of course, freeing electrons in a copper-oxide insulator to get superconducting current flowing for useful applications won't be quite as easy as melting ice to get liquid water or removing pieces from a chessboard. But it does offer clues.

"What this discovery implies is that if you prevented the static stripes from ever occurring, you might end up with a material that could act as a superconductor at a lower density of doping-and a much higher temperature," Davis said.

.


Related Links
DOE/Brookhaven National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Sweden's Vattenfall abandons research on CO2 storage
Stockholm (AFP) May 06, 2014
Swedish energy giant Vattenfall said Tuesday that it had given up its research on CO2 capture and storage, intended to make the company's coal power plants greener. "Vattenfall will discontinue its R&D (research and development) activities regarding coal power with CCS (carbon capture and storage)," the group said in a statement explaining its new research plans. The state-owned giant ha ... read more


ENERGY TECH
Russia to begin Moon colonization in 2030

LRO View of Earth

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

ENERGY TECH
Reset and Recovery for Opportunity

NASA wants greenhouse on Mars by 2021

NASA's Curiosity Rover Drills Sandstone Slab on Mars

Mars mission scientist Colin Pillinger dies

ENERGY TECH
More Plant Science as Expedition 39 Trio Trains for Departure

'Convergent' Research Solves Problems that Cross Disciplinary Boundaries

NASA Astronauts go underwater to test tools for a mission to an asteroid

Pioneering Test Pilot Bill Dana Dies at Age 83

ENERGY TECH
The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

China launches experimental satellite

ENERGY TECH
Ham video premiers on Space Station

NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

ENERGY TECH
Preliminary Injunction Lifted - ULA Purchase of RD-180 Engines Complies with Sanctions

Replacing Russian-made rocket engines is not easy

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

Pre-launch processing begins for the O3b Networks satellites

ENERGY TECH
Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

ENERGY TECH
US data capital poised to advance leadership position in big data

Airbus Defence and Space in radar technology study

Saab adds new radar variants

Appeal court revives Oracle-Google copyright battle




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.