Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Scientists develop real-time technique for studying ionic liquids at electrode interfaces
by Staff Writers
Upton NY (SPX) May 23, 2017


(Left to right) Wattaka Sitaputra, Feng Wang, James Wishart, Jerzy Sadowski, and Dario Stacchiola demonstrated a new method for studying ionic liquids at electrode interfaces in real time. Sitaputra, Sadowski, and Stacchiola used the electron microscope pictured above at Brookhaven Lab's Center for Functional Nanomaterials to observe how the ions in a particular liquid move and rearrange as voltage is applied to gold electrodes. The box that Sitaputra is holding contains the photolithography mask that he used to fabricate the electrodes, and Stacchiola is holding a tray with sample holders for the microscope. Wishart of Brookhaven's Chemistry Division contributed his expertise in ionic liquids; Wang, a physicist in Brookhaven's Sustainable Energy Technologies Division and an expert in energy storage systems, helped perform electrochemical measurements.

Ionic liquids - salts made by combining positively charged molecules (cations) and negatively charged molecules (anions) that are liquid at relatively low temperatures, often below room temperature - are increasingly being investigated for uses in batteries, supercapacitors, and transistors.

Their unique physical and chemical properties, including good ionic conductivity, low flammability and volatility, and high thermal stability, make them well suited for such applications. But thousands of ionic liquids exist and exactly how they interact with the electrified surfaces of electrodes remains poorly understood, making it difficult to choose the proper ionic liquid for a particular application.

Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have demonstrated a new method for observing in real time how the ions of such liquids move and reconfigure as different voltages are applied to the electrodes. The method is described in a paper published on May 12 in the online edition of Advanced Materials.

"When ionic liquid electrolytes come into contact with an electrified electrode, a special structure consisting of alternating layers of cations and anions - called an electric double layer (EDL) - forms at that interface," said first author Wattaka Sitaputra, a scientist at Brookhaven's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility where the research was conducted.

"But tracking the real-time evolution of the EDL, where the electrochemical reactions take place in batteries, is difficult because it is very thin (only a few nanometers thick) and buried by the bulk portion of the ionic liquid."

Until now, scientists have only been able to look at the initial and final EDL structures by using microscopy and spectroscopy techniques; the intermediate structure has been harder to probe. To visualize the structural changes of the EDL and the movement of ions as voltage is applied to the electrodes, the Brookhaven team used an imaging technique called photoemission electron microscopy (PEEM).

In this technique, surface electrons are excited with an energy source and accelerated into an electron microscope, where they pass through magnifying lenses before being projected onto a detector that records the electrons emitted from the surface.

Local variations in the photoemission signal intensities are then used to generate contrast images of the surface. In this case, the team used ultraviolet light to excite the electrons on the surfaces of both the ionic liquid (known as EMMIM TFSI) they deposited as thin films and two gold electrodes they fabricated.

"Imaging the whole surface, including the electrodes and the space between them, allows us to study not only the evolution of the structure of the ionic liquid-electrode interface but also to probe both electrodes at the same time while changing various conditions of the system," said CFN scientist and coauthor Jerzy (Jurek) Sadowski.

In this initial demonstration, the team changed the voltage applied to the electrodes, the thickness of the ionic liquid films, and the temperature of the system, all while monitoring changes in photoemission intensity.

The scientists found that the ions (which normally layer in a checkerboard-like configuration for this ionic liquid) move and arrange themselves according to the sign and magnitude of the applied voltage. Cations gravitate toward the electrode with the negative bias to counter the charge, and vice versa for anions.

As the difference in potential increases between the two electrodes, a highly dense layer of cations or anions can accumulate near the biased electrode, preventing further ions of the same charge from moving there (a phenomenon called overcrowding) and reducing ion mobility.

They also discovered that more counter ions gather near the biased electrode in thicker films.

"For very thin films, the number of ions available for rearrangement is small so the EDL layer may not be able to form," said Sitaputra. "In the thicker films, more ions are available and they have more room to move around. They rush to the interface and then disperse back into the bulk upon overcrowding to form a more stable structure."

The team further explored the importance of mobility in the rearrangement process by cooling the thicker film until the ions virtually stopped moving.

According to the team, applying PEEM to an operando experiment is quite novel and has never been done for ionic liquids.

"We had to overcome several technical challenges in the experimental setup, including designing and fabricating the gold-patterned electrodes and incorporating the sample holder in the electron microscope," explained Sadowski. "Ionic liquids probably have not been investigated through this technique because putting a liquid into an ultrahigh vacuum-based microscope seems counterintuitive."

The team plans to continue their research using the new aberration-corrected low-energy electron microscope (LEEM)/PEEM system - installed through a partnership between CFN and the National Synchrotron Light Source II (NSLS-II), another DOE Office of Science User Facility at Brookhaven - at NSLS-II's Electron Spectro-Microscopy beamline.

This system will enable the team to study not only the structural and electronic changes but also the chemical changes of the ionic liquid-electrode interface - all in a single experiment.

By determining these unique properties, scientists will be able to select the optimal ionic liquids for specific energy storage applications.

Research paper

TECH SPACE
The brighter side of twisted polymers
Thuwal, Saudi Arabia (SPX) May 24, 2017
A strategy to produce highly fluorescent nanoparticles through careful molecular design of conjugated polymers has been developed by KAUST researchers. Such tiny polymer-based particles could offer alternatives to conventional organic dyes and inorganic semiconductor quantum dots as fluorescent tags for medical imaging. Conjugated polymer-derived nanoparticles, called Pdots, are expected t ... read more

Related Links
Brookhaven National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
SoftBank-Saudi high-tech Vision fund raises $93bn

'Stone Age' Trump going back to horse and cart says Schwarzenegger

Saving time in space

SpaceX Dragon to deliver research payloads to Space Station

TECH SPACE
Mining the moon for rocket fuel to get us to Mars

Arianespace launches SES-15 using Soyuz rocket

ULS wins $208Mln for rocket vehicle production services

ISRO to Launch GSLV Mark III, Its Heaviest Rocket Soon

TECH SPACE
HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

How hard did it rain on Mars

Mars Rover Opportunity Begins Study of Valley's Origin

TECH SPACE
A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

TECH SPACE
AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

TECH SPACE
A new tool for discovering nanoporous materials

One-dimensional crystals for low-temperature thermoelectric cooling

New theory predicts wetted area of droplets colliding with flat surface

Physicists discover mechanism behind granular capillary effect

TECH SPACE
Scientists propose synestia, a new type of planetary object

Kepler Telescope Spies Details of Trappist-1's Outermost Planet

Astronomers Confirm Orbital Details of TRAPPIST-1h

Study shows how radioactive decay could support extraterrestrial life

TECH SPACE
Hubble spots moon around third largest dwarf planet

NASA asks science community for Europa Lander Instruments ideas

Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement