Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















PHYSICS NEWS
Scientists demonstrate the wavelike nature of van der Waals Forces
by Staff Writers
Luxembourg (SPX) Mar 18, 2016


Treating van der Waals interactions as coupling between waves is a paradigm shift for chemistry and materials science. Image courtesy University of Luxembourg. For a larger version of this image please go here.

Like the gravitational forces that are responsible for the attraction between the Earth and the moon as well as the dynamics of the entire solar system, there exist attractive forces between objects at the nanoscale. These are the so-called van der Waals forces, which are ubiquitous in nature and thought to play a crucial role in determining the structure, stability and function of a wide variety of molecules and materials.

A group of researchers, led by Alexandre Tkatchenko, Professor at the University of Luxembourg, demonstrated that the true nature of these forces differs from conventional wisdom in chemistry and biology. The scientists showed that these interactions have to be treated as coupling between waves rather than as mutual attraction between particles.

"In the simplest case, you can think of two chains of atoms and you could identify points in these chains that are attracted to each other. Typically, you would compute the van der Waals energy by just summing up all these pairs," explains Alexandre Tkatchenko, Professor of Condensed-Matter Physics at the Faculty of Science, Technology and Communication (FSTC) of the University of Luxembourg.

"However, we demonstrated that at realistic distances between nanoscale materials this is not true, and instead of particles you have to view them as waves. This drastically affects the way we think about these omnipresent interactions."

The research is likely to have an important impact on material science. Over the last two decades, scientists managed to change the properties of existing materials by incorporating nanomaterials, for example they enhanced stress response or achieved high conductivity of polymer composites.

"In order to understand all the properties of such nanocomposites you have to comprehend how they self-assemble at the nanoscale. The assembly of these materials is mainly driven by van der Waals interactions," Prof Tkatchenko adds.

As van der Waals forces are critical for many industrial applications, such as the manufacture of nanocomposites, this work could have a great impact on the refinement of processing techniques in that area.

The article entitled 'Wavelike Charge Density Fluctuation and van der Waals Interactions at the Nanoscale' is the result of an international and multi-disciplinary collaboration among four research institutions (Fritz Haber Institute of the Max Planck Society, University of Padova, Cornell University, and University of Luxembourg).

"This work provides both a qualitatively correct conceptual framework for describing van der Waals forces at the nanoscale as well as a quantitatively accurate computational framework for predicting how these ubiquitous interactions influence the physical and chemical properties of matter," adds Robert A. DiStasio Jr., Assistant Professor of Chemistry and Chemical Biology at Cornell University (USA) and one of the lead co-authors.

Research paper: "Wavelike charge density fluctuations and van der Waals interactions at the nanoscale"

.


Related Links
University of Luxembourg
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
PHYSICS NEWS
A perfectly still laboratory in space
Paris (ESA) Mar 10, 2016
Following a long series of tests, ESA's LISA Pathfinder has started its science mission to prove key technologies and techniques needed to observe gravitational waves from space. Predicted by Albert Einstein a century ago, gravitational waves are fluctuations in the fabric of spacetime produced by exotic astronomical events such as supernova explosions or the merging of two black holes. Re ... read more


PHYSICS NEWS
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

PHYSICS NEWS
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

PHYSICS NEWS
NASA Selects American Small Business, Research Institution Projects for Continued Development

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

PHYSICS NEWS
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

PHYSICS NEWS
Grandpa astronaut to break Scott Kelly's space record

Three new members join crew of International Space Station

Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

PHYSICS NEWS
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

PHYSICS NEWS
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

PHYSICS NEWS
International research team achieves controlled movement of skyrmions

Light helps the transistor laser switch faster

INRS takes giant step forward in generating optical qubits

Wrangler Supercomputer speeds through big data




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.