. 24/7 Space News .
TECH SPACE
Scientists create 'rewritable magnetic charge ice'
by Staff Writers
DeKalb IL (SPX) May 20, 2016


A depiction of the global order of magnetic charge ice. Orange-red areas represent the positive charges; blue areas represent negative charges. Image courtesy Yong-Lei Wang and Zhili Xiao. For a larger version of this image please go here.

A team of scientists working at the U.S. Department of Energy's (DOE) Argonne National Laboratory and led by Northern Illinois University physicist and Argonne materials scientist Zhili Xiao has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies.

The scientists' research report on development of magnetic charge ice is published in the May 20, 2016 issue of the journal Science. With potential applications involving data storage, memory and logic devices, magnetic charge ice could someday lead to smaller and more powerful computers or even play a role in quantum computing, Xiao said.

Current magnetic storage and recording devices, such as computer hard disks, contain nanomagnets with two polarities, each of which is used to represent either 0 or 1 - the binary digits, or bits, used in computers. A magnetic charge ice system could have eight possible configurations instead of two, resulting in denser storage capabilities or added functionality unavailable in current technologies.

"Our work is the first success achieving an artificial ice of magnetic charges with controllable energy states," said Xiao, who holds a joint appointment between Argonne and NIU. "Our realization of tunable artificial magnetic charge ices is similar to the synthesis of a dreamed material. It provides versatile platforms to advance our knowledge about artificial spin ices, to discover new physics phenomena and to achieve desired functionalities for applications."

Over the past decade, scientists have been highly interested in creating, investigating and attempting to manipulate the unusual properties of "artificial spin ices," so-called because the spins have a lattice structure that follows the proton positioning ordering found in water ice.

Scientists consider artificial spin ices to be scientific playgrounds, where the mysteries of magnetism might be explored and revealed. However, in the past, researchers have been frustrated in their attempts to achieve global and local control of spin-ice magnetic charges.

To overcome this challenge, Xiao and his colleagues decoupled the lattice structure of magnetic spins and the magnetic charges. The scientists used a bi-axis vector magnet to precisely and conveniently tune the magnetic charge ice to any of eight possible charge configurations. They then used a magnetic force microscope to demonstrate the material's local write-read-erase multi-functionality at room temperature.

For example, using a specially developed patterning technique, they wrote the word, "ICE," on the material in a physical space 10 times smaller than the diameter of a human hair.

Magnetic charge ice is two-dimensional, meaning it consists of a very thin layer of atoms, and could be applied to other thin materials, such as graphene. Xiao said the material also is environmentally friendly and relatively inexpensive to produce.

Yong-Lei Wang, a former postdoctoral research associate of Xiao's, is first author and co-corresponding author on the Science article. He designed the new artificial magnetic ice structure and built custom instrumentation for the research.

"Although spin and magnetic charges are always correlated, they can be ordered in different ways," said Wang, who now holds a joint appointment with Argonne and Notre Dame. "This work provides a new way of thinking in solving problems. Instead of focusing on spins, we tackled the magnetic charges that allow more controllability."

There are hurdles yet to overcome before magnetic charge ice could be used in technological devices, Xiao added. For example, a bi-axis vector magnet is required to realize all energy state configurations and arrangements, and it would be challenging to incorporate such a magnet into commercial silicon technology.

But in addition to uses in traditional computing, Xiao said quantum computing could benefit from magnetic monopoles in the charge ice. Other potential applications of magnetic charge ice might include enhancement of the current-carrying capability of superconductors.

In addition to Xiao and Wang, members of the research team include Xiao's Ph.D. student Jing Xu; scientists Alexey Snezhko, John E. Pearson, George W. Crabtree and Wai-Kwong Kwok in Argonne's Materials Science Division; and scientists Leonidas E. Ocola and Ralu Divan in Argonne's Center for Nanoscale Materials.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northern Illinois University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Dartmouth announces new way to explore mathematical universe
Hanover NH (SPX) May 12, 2016
An international group of mathematicians at Dartmouth College and other institutions have released a new online resource that provides detailed maps of previously uncharted mathematical terrain. The "L-functions and Modular Forms Database," or LMFDB, is an intricate catalog of mathematical objects that maps out the connections between them. Both beautiful and functional like an atlas, the ... read more


TECH SPACE
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

TECH SPACE
The rise and fall of Martian lakes

Opportunity microscopic imaging camera back to normal operations

Second cycle of Martian seasons completing for Curiosity Rover

Flying observatory detects atomic oxygen in Martian atmosphere

TECH SPACE
Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

NASA Invests in Next Stage of Visionary Technology Development

NASA makes dozens of patents available in public domain

Pentagon's research agency showcases future tech

TECH SPACE
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

TECH SPACE
ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

TECH SPACE
Pre-launch processing is underway with Indonesia's BRIsat for the next Arianespace heavy-lift flight

New Antares Rocket Rolls Out at NASA Wallops

First work platforms powered tested in VAB for Space Launch System

SpaceX's Dragon cargo ship splashes down in Pacific

TECH SPACE
Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

Kepler space telescope finds another 1284 exo planets

TECH SPACE
Scientists take a major leap toward a 'perfect' quantum metamaterial

UW team first to measure microscale granular crystal dynamics

Self-healing, flexible electronic material restores functions after many breaks

Digital "clone" testing aims to maximize machine efficiency









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.