. 24/7 Space News .
CHIP TECH
Scientists create 'magnetic charge ice'
by Staff Writers
Argonne IL (SPX) May 30, 2016


This is a depiction of magnetic charge ice. Nanoscale magnets are arranged in a two-dimensional lattice. Each nanomagnet produces a pair of magnetic charges, one positive (red ball on the north pole) and one negative (blue ball on the south pole). The magnetic flux lines (white) point from positive charges to negative charges. Image courtesy Yong-Lei Wang/Zhili Xiao. For a larger version of this image please go here.

A team of scientists working at the U.S. Department of Energy's (DOE) Argonne National Laboratory has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies.

The scientists' research report on development of magnetic charge ice is published in the May 20 issue of the journal Science. "With potential applications involving data storage, memory and logic devices, magnetic charge ice could someday lead to smaller and more powerful computers or even play a role in quantum computing." said Zhili Xiao who holds a joint appointment between Argonne and Northern Illinois University.

Current magnetic storage and recording devices, such as computer hard disks, contain nanomagnets with two polarities, each of which is used to represent either 0 or 1 - the binary digits, or bits, used in computers. A magnetic charge ice system could have eight possible configurations instead of two, resulting in denser storage capabilities or added functionality unavailable in current technologies.

"Our work is the first success achieving an artificial ice of magnetic charges with controllable energy states," said Xiao. "Our realization of tunable artificial magnetic charge ices is similar to the synthesis of a dreamed material. It provides versatile platforms to advance our knowledge about artificial spin ices, to discover new physics phenomena and to achieve desired functionalities for applications."

Over the past decade, scientists have been highly interested in creating, investigating and attempting to manipulate the unusual properties of "artificial spin ices," so-called because the spins have a lattice structure that follows the proton positioning ordering found in water ice.

Scientists consider artificial spin ices to be scientific playgrounds, where the mysteries of magnetism might be explored and revealed. However, in the past, researchers have been frustrated in their attempts to achieve global and local control of spin-ice magnetic charges.

To overcome this challenge, Xiao and his colleagues decoupled the lattice structure of magnetic spins and the magnetic charges. The scientists used a bi-axis vector magnet to precisely and conveniently tune the magnetic charge ice to any of eight possible charge configurations. They then used a magnetic force microscope to demonstrate the material's local write-read-erase multi-functionality at room temperature.

For example, using a specially developed patterning technique, they wrote the word, "ICE," on the material in a physical space 10 times smaller than the diameter of a human hair.

Magnetic charge ice is two-dimensional, meaning it consists of a very thin layer of atoms, and could be applied to other thin materials, such as graphene. Xiao said the material also is environmentally friendly and relatively inexpensive to produce.

Yong-Lei Wang, who holds a joint appointment with Argonne and Notre Dame University, is first author and co-corresponding author on the Science article. He designed the new artificial magnetic ice structure and built the custom instrumentation for the research.

"Although spin and magnetic charges are always correlated, they can be ordered in different ways," said Wang "This work provides a new way of thinking in solving problems. Instead of focusing on spins, we tackled the magnetic charges that allow more controllability."

There are hurdles yet to overcome before magnetic charge ice could be used in technological devices, Xiao added. For example, a bi-axis vector magnet is required to realize all energy state configurations and arrangements, and it would be challenging to incorporate such a magnet into commercial silicon technology.

"By combining these magnetic nanopatterned structures with other materials such as superconductors, our rewritable magnetic charge ice provides an ideal and versatile platform to explore and control new emergent properties that can arise from novel hybrid structures," said Wai-Kwong Kwok, who is the group leader of Argonne's Superconductivity and Magnetism group where this work was performed, and is a coauthor on this article.

Research paper: In addition to Xiao, Wang and Kwok, members of the research team include Xiao's Ph.D. student Jing Xu; scientists Alexey Snezhko, John E. Pearson, and George W. Crabtree in Argonne's Materials Science Division; and scientists Leonidas E. Ocola and Ralu Divan in Argonne's Center for Nanoscale Materials, a DOE Office of Science User Facility.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Argonne National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
New tabletop instrument tests electron mobility for next-gen electronics
Washington DC (SPX) May 26, 2016
The National High Magnetic Field Laboratory, with facilities in Florida and New Mexico, offers scientists access to enormous machines that create record-setting magnetic fields. The strong magnetic fields help researchers probe the fundamental structure of materials to better understand and manipulate their properties. Yet large-scale facilities like the MagLab are scarce, and scientists must co ... read more


CHIP TECH
SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

CHIP TECH
NASA Radar Finds Ice Age Record in Mars' Polar Cap

Potential Habitats for Early Life on Mars

Opportunity takes panorama; uses wheel to scuff soil

Are mystery Mars plumes caused by space weather?

CHIP TECH
Fun LoL to Teach Machines How to Learn More Efficiently

'Metabolomics: You Are What You Eat' video

ISS Astronauts Enjoy Dish Cooked Up by Students from Hampton, Virginia

Russia Helps Guatemalan Man Become His Country's First Cosmonaut

CHIP TECH
China mulls teaming up with foreign agencies to explore Moon

China's new launch center prepares for maiden mission

China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

CHIP TECH
NASA to try again to inflate spare room in space

Temporary space station habitat fails to inflate

International Space Cooperation Strongest in Times of Political Crises

Alexander Gerst to be Space Station commander

CHIP TECH
Arianespace to supply payload dispenser systems for OneWeb constellation

UK's First Spaceport Could Be Beside the Sea

SpaceX Return of Samples Marks Next Step in One-Year Mission Science

Arianespace's Soyuz is approved for its early morning liftoff on May 24

CHIP TECH
Astronomers find giant planet around very young star

Planet 1,200 Light-Years Away Is Good Prospect for a Habitable World

Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

CHIP TECH
Believe the hype? How virtual reality could change your life

Mantis shrimp inspires next generation of ultra-strong materials

'On-the-fly' 3-D print system prints what you design, as you design it

Automating DNA origami opens door to many new uses









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.