. 24/7 Space News .
TECH SPACE
Scientists at MIPT explain the way Weyl particles 'dance' on crystal surface
by Staff Writers
Moscow, Russia (SPX) May 03, 2017


The bulk electron spectrum in a Weyl semimetal is described by a set of an even number of Weyl cones (aka valleys) centered at special points in the momentum space. These conical points, which are sometimes called "diabolical," conceal nontrivial topology. Credit: MIPT Press Office

Researchers at MIPT have examined the behavior of Weyl particles trapped on the surface of Weyl semimetals. Their study was published in the prestigious Rapid Communications section of Physical Review B.

The Weyl particle - or the Weyl fermion, to use a more precise term - was predicted in the early 20 century by Hermann Weyl, a German physicist. Despite his early prediction and tremendous efforts directed toward the search for the illusive Weyl particle, it was only experimentally discovered in 2015.

Contrary to expectations, the Weyl was not observed in a giant collider but in tiny crystals, which came to be known as Weyl semimetals. These materials have since attracted a lot of attention, making this research area one of the hottest in modern physics.

Weyl semimetals can be considered a 3-D equivalent of graphene, the 2-D crystal with unique properties discovered by MIPT graduates Andre Geim and Konstantin Novoselov who were awarded the Nobel Prize in physics in 2010.

Electrons in graphene and Weyl semimetals behave as massless particles akin to photons. However, unlike photons, these particles have an electric charge, making them promising for applications in electronics.

As it turned out, the bizarre properties of electrons in these and a number of similar materials can be described in terms of the topological field theory. It is worthy to note that the 2016 Nobel Prize in physics was awarded to scientists that introduced topological concepts into condensed state physics.

In a theoretical study supervised by MIPT's Prof. Vladimir Volkov, Zhanna Devizorova, a Ph.D. student at MIPT, looked into surface states of Weyl fermions, i.e., how electrons behave near the surface of a Weyl semimetal crystal. The special states of electrons near the surface of a crystal, known as electronic surface states, were predicted in the 1930s by future Nobel Prize winners Igor Tamm (USSR) and William Shockley (USA) who proposed and studied the first theoretical models of these states.

However, it was not until recently that surface states have gained considerable attention of researchers. The practical significance of this field of research is evidenced by the fact that modern microelectronics using silicon are universally based on near-surface conducting channels. However, silicon itself is not a topological material.

The behavior of any particle under an external field is determined by the dispersion law that relates the particle's energy to its momentum. According to the dispersion law, the energy spectrum of electrons in a crystal defines its electronic properties such as conductivity.

The bulk energy spectrum of electrons in a Weyl semimetal is described by a set of an even number of Weyl cones, or valleys, centered at special points in the momentum space.

The surface of such a crystal has remarkable properties. Weyl semimetals are distinguished by the trademark energy spectrum of particles populating their surface states. In these exotic spectra, the curves that represent states with equal energy are nonclosed and appear as arcs on two-dimensional momentum space. These so-called Fermi arcs connect points of the electron spectrum that belong to different Weyl cones.

Unlike Weyl fermions, ordinary electrons are characterized by closed Fermi curves in the form of a circle. Until now, all theoretical descriptions of Fermi arcs have relied on complicated and obscure first-principles computer calculations.

The MIPT-based scientists took advantage of the fact that Weyl fermions located away from the surface of the crystal obey Weyl's differential equations to derive the boundary conditions that successfully account for intervalley interactions on semimetal surface.

They solved the system of Weyl's equations for two valleys "by hand" taking into account the derived boundary conditions, thus analytically finding the shape of Fermi arcs. In effect, they offered a quantitative as well as qualitative description of experimental data and proved that Fermi arc formation is mainly driven by strong intervalley interaction under Weyl fermion scattering on crystal surface.

It is conceivable that Weyl semimetals could enable ultrafast electronics. Theoretical researchers are currently looking into principles that lay the foundation for next-generation electronic devices based on Weyl semimetals.

The analytical approach put forward by MIPT scientists is a relatively easy way of accounting for the influence of electric and magnetic fields on Weyl fermions. The heuristic potential of this approach could greatly facilitate progress toward faster and more efficient electronics.

Research paper

TECH SPACE
Russian scientists create new system of concrete building structures
Saint-Petersburg, Russia (SPX) May 03, 2017
Professor of the Institute of Civil Engineering of Peter the Great Saint-Petersburg Polytechnic University (SPbPU) Andrey Ponomarev and a graduate student Alexander Rassokhin developed a new construction technology. Scientists created several types of building blocks based on nanostructured high-strength lightweight concrete, reinforced with skew-angular composite coarse grids. The develop ... read more

Related Links
Moscow Institute of Physics and Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
AGU journal commentaries highlight importance of Earth and space science research

NASA spacesuits over budget, tight on timeline: audit

'Better you than me,' Trump tells record-breaking astronaut

Lunar, Martian Greenhouses Designed to Mimic Those on Earth

TECH SPACE
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

TECH SPACE
How Old are Martian Gullies

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

SwRI-led team discovers lull in Mars' giant impact history

TECH SPACE
China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

TECH SPACE
ViaSat-2 Satellite to Launch on June 1

ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

TECH SPACE
Russian scientists create new system of concrete building structures

New organic lasers one step closer to reality

First luminescent molecular system with a lower critical solution temperature

Control of molecular motion by metal-plated 3-D printed plastic pieces

TECH SPACE
Research Center A Hub For Origins of Life Studies

ISS investigation aims to identify unknown microbes in space

'Iceball' Planet Discovered Through Microlensing

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

TECH SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.