. 24/7 Space News .
Scientists Use Satellites To Detect Deep-Ocean Whirlpools

Xiao-Hai Yan (seated), and postdoctoral researcher Young-Heon Jo. Copyright University of Delaware.
by Staff Writers
Newark DE (SPX) Mar 21, 2006
Move over, Superman, with your X-ray vision. Marine scientists have now figured out a way to "see through" the ocean's surface and detect what's below, with the help of satellites in space.

Using sensor data from several U.S. and European satellites, researchers from the University of Delaware, NASA's Jet Propulsion Laboratory, and the Ocean University of China have developed a method to detect super-salty, submerged eddies called "Meddies" that occur in the Atlantic Ocean off Spain and Portugal at depths of more than a half mile. These warm, deep-water whirlpools, part of the ocean's complex circulatory system, help drive the ocean currents that moderate Earth's climate.

The research marks the first time scientists have been able to detect phenomena so deep in the ocean from space -- and using a new multi-sensor technique that can track changes in ocean salinity.

The lead author of the study was Xiao-Hai Yan, Mary A. S. Lighthipe Professor of Marine Studies at the University of Delaware and co-director of the UD Center for Remote Sensing. His collaborators included Young-Heon Jo, a postdoctoral researcher in the UD College of Marine Studies, W. Timothy Liu from NASA's Jet Propulsion Laboratory in Pasadena, California, and Ming-Xia He, from the Ocean Remote Sensing Institute at the Ocean University of China in Qingdao, China. Their results are reported in the April issue of the American Meteorological Society's Journal of Physical Oceanography.

"Since Meddies play a significant role in carrying salty water from the Mediterranean Sea into the Atlantic, new knowledge about their trajectories, transport, and life histories is important to the understanding of their mixing and interaction with North Atlantic water," Yan notes. "Ultimately, we hope this information will lead to a better understanding of their impact on global ocean circulation and global climate change."

First identified in 1978, Meddies are so named because they are eddies -- rotating pools of water -- that flow out of the Mediterranean Sea. A typical Meddy averages about 2,000 feet (600 meters) deep and 60 miles (100 kilometers) in diameter, and contains more than a billion tons (1,000 billion kilograms) of salt.

While warm water ordinarily resides at the ocean's surface, the warm water flowing out of the Mediterranean Sea has such a high salt concentration that when it enters the Atlantic Ocean at the Strait of Gibraltar, it sinks to depths of more than a half mile (1,000 meters) along the continental shelf. This underwater river then separates into clockwise-flowing Meddies that may continue to spin westward for more than two years, often coalescing with other Meddies to form giant, salty whirlpools that may stretch for hundreds of miles.

"Since the Mediterranean Sea is much saltier than the Atlantic Ocean, the Meddies constantly add salt to the Atlantic," Yan says.

Without this steady salt-shaker effect, he notes, the conveyor belt of ocean currents that help distribute heat from the tropics toward the North Pole might be diminished, resulting in colder temperatures in regions such as New England and northwestern Europe that currently experience more temperate climates.

"There is concern about global climate change shutting down the ocean currents that warm the Atlantic Ocean," Yan says. "The melting of sea ice at the North Pole could add enormous amounts of fresh water to the Atlantic, reducing its salinity enough to slow the sinking of cooler water, which would shut down the conveyor belt of ocean currents that help warm major regions of the planet."

Yan and his team drew on data from several satellite sensors that can read an important signal of a Meddy's presence.

Altimeters flying aboard NASA's Topex/Poseidon and Jason satellites and the European Space Agency's European Remote Sensing and Environment (Envisat) satellites measured the height of the sea surface compared to average sea level, revealing the difference in altitude where a Meddy entered the Atlantic.

Specialized microwave radars called scatterometers, including the former NASA Scatterometer (NSCAT) on Japan's Midori-1 spacecraft and the current SeaWinds instrument on NASA's QuikSCAT spacecraft, measured the surface wind over the ocean, providing data needed to remove the surface variability "noise" caused by the wind blowing over the ocean's surface.

The scientists also analyzed data provided by an infrared spectrometer known as the Advanced Very High Resolution Radiometer, which flies aboard National Oceanic and Atmospheric Administration satellites. This instrument maps the heat emitted by the ocean's top layer and showed the increase in temperature from a warm Meddy before it began sinking beneath the waves.

"By carefully removing the stronger surface signatures of upper ocean processes, we were able to unveil the surface signatures of deeper ocean processes, such as the Meddies, to these space-based sensors," Liu explains.

While the technique is not yet 100% accurate, Yan and his colleagues are continuing to refine it and are exploring its application to other coastal regions of the world.

They are currently examining salinity variations in the East China Sea before and after the Three Gorges Dam -- the largest dam in the world -- was built. The data will help researchers assess the dam's impacts on the ecosystem and on water circulation patterns.

The research was supported by grants from the National Aeronautics and Space Administration, the Office of Naval Research, and the National Oceanic and Atmospheric Administration.

Related Links
University of Delaware
Ocean University of China
NASA JPL



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


GeoEye Receives Additional Awards Totaling 13 Million From The NGA
Dulles VA (SPX) Mar 21, 2006
GeoEye has announced its ClearView contracts for map-accurate imagery and services with the National Geospatial-Intelligence Agency (NGA) have increased in value by an additional $13 million. The latest increases are in addition to the $36 million awarded to the company in January 2006, bringing the value for GeoEye's ClearView contracts to $49 million in 2006.







  • Resisting Radiation
  • Integral Looks At Earth To Seek Source Of Cosmic Radiation
  • NASA And New York City Museum Bring Universe Down To Earth
  • Omega World Travel Targeting Emerging Space Tourism Opportunities

  • Squyres: Getting A Handle On Home Plate
  • Mars Rover Update � Spirit Driving On Five Wheels
  • NASA Names New Mars Rover Program Director
  • Mars Express Captures 'Hourglass Crater'

  • ST5 Micro-Sat Launch Pushed Back To At Least Wednesday
  • ICO North America To Launch GEO Sat Using ILS Atlas V
  • ST5 Launch Aborted At Last Minute
  • Prep Begins For Next Ariane 5 Launch

  • FluWrap: Deadly Strain Divides
  • Satellite Flood Mapping Service Strengthens Eastern France Civil Protection
  • Scientists Use Satellites To Detect Deep-Ocean Whirlpools
  • GeoEye Receives Additional Awards Totaling $13 Million From The NGA

  • To Pluto And Beyond
  • New Horizons Update: 'Boulder' and 'Baltimore'
  • New Horizons Set For A Comfortable Cruise Out To Jupiter And Pluto Transfer
  • Questioning Pluto

  • Integral Catches Stellar 'Corpses' By The Tail
  • Astronomers Get A Chance To Size Up A Brown Dwarf
  • The Oldest Explosion In The Universe
  • Insect-Eye Instrument Reveals Turbulent Life Of Distant Galaxies

  • SMART-1 Tracks Crater Lichtenberg And Young Lunar Basalts
  • Quantum Technique Can Foil Hackers
  • Noah's Ark On The Moon
  • X PRIZE Foundation And The $2M Lunar Lander Challenge

  • RFID-Based Asset Management With Innovative Sensory Technology
  • Trimble Introduces Quadband GSM/GPRS Version of the TrimTrac Locator
  • Getting Lost May Soon Become A Thing Of The Past
  • GIOVE A Transmits Loud And Clear

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement