. 24/7 Space News .
Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

Vinyl Alcohol and its fellow isomers

Kitt Peak - October 1, 2001
Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space.

"The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space.

It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space.

Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy.

The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters.

Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts.

For many years now, scientists have been searching for the right mechanism to explain how the building blocks for vinyl alcohol and other chemicals are able to form the necessary chemical bonds to make larger molecules -- those containing as many as six or more atoms. "It has been an ongoing quest to understand exactly how these more complex molecules form and become distributed throughout the interstellar medium," said Turner.

Since the 1970s, scientists have speculated that molecules could form on the microscopic dust grains in interstellar clouds. These dust grains are thought to trap the fast-moving molecules.

The surface of these grains would then act as a catalyst, similar to a car's catalytic converter, and enable the chemical reactions that form vinyl alcohol and the other complex molecules.

The problem with this theory, however, is that the newly formed molecules would remain trapped on the dust grains at the low temperature characteristic of most of interstellar space, and the energy necessary to "knock them off" would also be strong enough to break the chemical bonds that formed them.

"This last process has not been well understood," explained Turner. "The current theory explains well how molecules like vinyl alcohol could form, but it doesn't address how these new molecules are liberated from the grains where they are born."

To better understand how this might be accomplished, the scientists considered the volatile and highly energetic region of space where these molecules were detected.

Turner and others speculate that since this cloud lies near an area of young, energetic star formation, the energy from these stars could evaporate the icy surface layers of the grains. This would liberate the molecules from their chilly nurseries, depositing them into interstellar space where they can be detected by sensitive radio antennas on Earth.

Astronomers are able to detect the faint radio signals that these molecules emit as they jump between quantum energy states in the act of rotating or vibrating.

Turner cautions, however, that even though this discovery has shed new light on how certain highly complex species form in space, the final answer is still not in hand.

"Although vinyl alcohol and its isomeric partners may well have formed on grains," said Turner "another important possibility has been found. The grain evaporative processes near star formation appear to release copious amounts of somewhat simpler molecules such as formaldehyde (H2CO) and methanol (CH3OH), which may be reacting in the gas phase to produce detectable amounts of vinyl alcohol and its isomers." A program to search for other families of isomers is planned, which the astronomers believe could distinguish between these two possibilities.

The astronomers used 2- and 3-mm band radio frequencies to make their observations with the 12 Meter Telescope. This telescope was taken off-line by the NRAO to make way for the Atacama Large Millimeter Array, and is now operated by the Steward Observatory of the University of Arizona. Built in 1967, the telescope has had a long and productive history in detecting molecules in space.

Related Links
National Radio Astronomy Observatory
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Pluto Gets More Competition
Paris (AFP) Aug 24, 2001
A huge icy rock orbiting the Sun in deep space is the biggest asteroid ever spotted, outstripping the previous record-holder which was discovered 200 years ago, European astronomers said Friday.

---------------------------------------------------------
New from Telescopes.com!

It's new. And it's downright terrific!

Celestron's CPC Schmidt-Cassegrain telescope is the scope you've been waiting for! It offers new alignment technology, advanced engineering, and bold new design at a new, low price!

In fact, Celestron's Professional Computerized (CPC) scope with revolutionary SkyAlign Alignment Technology redefines everything that amateur astronomers are looking for. It offers quick and simple alignment, GPS technology, unsurpassed optical quality, ease of use, advanced ergonomics, enhanced computerization and, most important, affordability.

Want to view M-31 tonight? One button takes you there!

Shop for telescopes online at Telescopes.com! today!
------------------------------------------------------------







  • Consolidated Space Operations Contract: Evaluating and Reporting Cost Savings
  • The Mechanics Of The Space Age
  • US, Russia Do Deal For More Space Tourists
  • Eating Right For Long-Duration Space Missions

  • Plenty of Water on Mars
  • Europe to identify underground water on Mars
  • Tecstar Returns to Mars
  • Odyssey Checks In A Month Out From Mars

  • ATK Helps Rocket Athena I To Orbit In Kodiak Maiden Launch
  • Japanese Rocket Launch Delayed Several Hours: Space Agency
  • Ariane 5 Upper Stage Fails To Deliver Twin Birds To GEO

  • Steady Growth for Land And Sea-Based EO Systems Market
  • Orbital Restructures Orbimage Finances
  • EarthWatch Rebrands Itself DigitalGlobe

  • Out To The Horizon Of Sol
  • Out To The Horizon Of Sol
  • Nuclear Power On The Outer Rim
  • The Medium Cut Of Space Exploration

  • Scientists and Engineers Complete NASA-Funded Phase A Study Of Pluto-Kuiper Belt Mission
  • Researchers Test Asteroid Collector In Zero Gravity Conditions
  • Crunch Time For US Space Science Program
  • Crunch Time For US Space Science Program

  • Unique tasks for SMART-1 in exploring the Moon
  • NASA Seeks Berth On India's Moon Mission

  • Civil-Military Interoperability For GPS Assisted Aircraft Landings Demonstrated
  • Quantum Weirdness May Improve GPS Accuracy
  • System Would Harness GPS Signals To Study Environment
  • Forum Considers Euro GPS System

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement