Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Scanning the surface of lithium titanate
by Staff Writers
Sendai, Japan (SPX) Jul 07, 2017


The three-fold symmetry indicated here reveals the spinel crystal structure. Credit Taro Hitosugi (source Nature Communications)

Researchers at Tokyo Institute of Technology, Tohoku University and the University of Tokyo have applied advanced scanning methods to visualize the previously unexplored surface of a superconductor: lithium titanate (LiTi2O4).

LiTi2O4 is the only known example of a so-called spinel1 oxide superconductor. Its rarity makes LiTi2O4 of enormous interest to those studying the origins of superconductivity, as it has the highest superconducting transition temperature (of up to 13. 7 K) within this group of materials.

Although LiTi2O4 in bulk form has been studied for decades, little is known about its surfaces, owing to the difficulty of preparing suitable LiTi2O4 surfaces for further analysis.

Now, using a combination of experimental and theoretical methods, a team of researchers including Taro Hitosugi of Tokyo Tech and the Advanced Institute for Materials Research at Tohoku University, has obtained visual evidence of superconductivity on ultrathin LiTi2O4 films, marking a milestone in surface science.

Published in Nature Communications, the study began with the detection of an unexpected energy "gap," hinting at the existence of superconductivity at the surface. Furthermore, their investigations revealed that the surface superconductivity is in different states from that of the bulk interior. The researchers used two experimental methods to visualise this finding: pulsed laser deposition2 (PLD), a technique that has enabled the production of high-quality LiTi2O4 films under vacuum conditions; and low-temperature scanning tunnelling microscopy/spectroscopy (STM/STS), for precise imaging of the surfaces.

"Imaging the atoms for the first time was surprising, as it's usually very difficult to observe the spinel-oxide atoms," says Hitosugi. "We then wanted to know the exact atomic arrangement on the surface, and in order to do that, we compared theory and experiment."

So, to delve deeper into how the atoms are arranged, the team made theoretical calculations that led them to consider four types of surface cut from bulk LiTi2O4. By comparing these four types, the researchers found one - called the TiLi2-terminated surface - that matched their experimental observations.

Hitosugi explains that "knowing the accurate arrangement of atoms is the most important thing," as this knowledge will help to advance understanding of superconductivity at its thinnest limit, two-dimensional superconductivity at the surface.

In addition to the superconducting properties, knowing the atomic arrangements could lead to unveiling the mechanisms behind lithium-ion battery operations. The understanding of electrode surfaces is an essential step for designing next-generation lithium-ion batteries with higher capacity, enhanced life cycles and fast charging capabilities, because lithium ions migrate across the electrode surfaces.

As the study provides new directions for interface research, Hitosugi plans to collaborate with Tokyo Tech colleagues now working on solid-state electrolytes, specifically to improve understanding of the electrode-electrolyte interface (EEI), one of the hottest topics in battery research.

"Many people are interested in solid-state batteries - the future of lithium-ion batteries," he says. "Now that we know the surface atomic arrangement of this material, we can begin to simulate the operation of solid-state lithium batteries."

Research paper

TECH SPACE
Monash Earth Scientists involved in discovery of a new mineral
Melbourne, Australia (SPX) Jul 07, 2017
In the harshest of environments in far-east Russia, Monash scientists have played a leading role in the discovery of a new mineral, which could revolutionise the future of the mining industry. The mineral - Nataliyamalikite - is new, and did not exist before, explains Professor Joel Brugger, the lead author in a recently published paper in American Mineralogist. It contains thallium, ... read more

Related Links
Tohoku University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Don't look down: glass bottom skywalk thrills in China

NASA Statement on National Space Council

Silicon-on-Seine: world's biggest tech incubator opens in Paris

India, Portugal Shake Hands on Space Cooperation

TECH SPACE
After two delays, SpaceX launches broadband satellite for IntelSat

On the road to creating an electrodeless spacecraft propulsion engine

Dragon Splashes Down to Complete Resupply Mission

Ariane 5 launch proves reliability and flies new fairing

TECH SPACE
Mars surface 'more uninhabitable' than thought: study

Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

TECH SPACE
Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

China prepares to launch second heavy-lift carrier rocket

China heavy-lift carrier rocket launch fails: state media

TECH SPACE
HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

Second launch doubles number of Iridium NEXT satellites in orbit to 20

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

TECH SPACE
Sorting complicated knots

Engineers find way to evaluate green roofs

Nature-inspired material uses liquid reinforcement

Feel the heat, one touch a time

TECH SPACE
NASA diligently tracks microbes inside the International Space Station

Why Does Microorganism Prefer Meager Rations Over Rich Ones

Complex Organic Molecules Found On "Space Hamburger"

Extreme Atmosphere Stripping May Limit Exoplanets' Habitability

TECH SPACE
New Mysteries Surround New Horizons' Next Flyby Target

Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby

NASA's Juno Spacecraft to Fly Over Jupiter's Great Red Spot July 10




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement