Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Scaling up tissue engineering
by Staff Writers
Boston MA (SPX) Mar 08, 2016


Confocal microscopy image showing a cross-section of a 3D-printed, 1-centimeter-thick vascularized tissue construct showing stem cell differentiation towards development of bone cells, following one month of active perfusion of fluids, nutrients, and cell growth factors. The structure was fabricated using a novel 3D bioprinting strategy invented by Jennifer Lewis and her team at the Wyss Institute and Harvard SEAS. Image courtesy Lewis Lab, Wyss Institute at Harvard University.

A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School for Engineering and Applied Sciences (SEAS) has invented a method for 3D bioprinting thick vascularized tissue constructs composed of human stem cells, extracellular matrix, and circulatory channels lined with endothelial blood vessel cells.

The resulting network of vasculature contained within these deep tissues enables fluids, nutrients and cell growth factors to be controllably perfused uniformly throughout the tissue. The advance is reported March 7 in the journal Proceedings of the National Academy of Sciences.

"This latest work extends the capabilities of our multi-material bioprinting platform to thick human tissues, bringing us one step closer to creating architectures for tissue repair and regeneration," says Wyss Core Faculty member Jennifer A. Lewis, Sc.D., senior author on the study, who is also the Hansorg Wyss Professor of Biologically Inspired Engineering at SEAS.

To date, scaling up human tissues built of a variety of cell types has been limited by a lack of robust methods for embedding life-sustaining vascular networks. Building on their earlier work, Lewis and her team have now increased the tissue thickness threshold by nearly tenfold, setting the stage for future advances in tissue engineering and repair. The method combines vascular plumbing with living cells and an extracellular matrix, enabling the structures to function as living tissues.

In the study, Lewis and her team showed that their 3D bioprinted tissues could sustain and function as living tissue architectures for upwards of six weeks.

In the study, Lewis' team demonstrated the 3D printing of one centimeter-thick tissue containing human bone marrow stem cells surrounded by connective tissue. By pumping bone growth factors through the supporting vasculature lined with the same endothelial cells found in our blood vessels, the team induced cell development toward bone cells over the course of one month.

"This research will help to establish the fundamental scientific understanding required for bioprinting of vascularized living tissues," Zhijian Pei, National Science Foundation Program Director for the Directorate for Engineering Division of Civil, Mechanical and Manufacturing Innovation, which funded the project. "Research such as this enables broader use of 3-D human tissues for drug safety and toxicity screening and, ultimately, for tissue repair and regeneration."

Lewis' novel 3D bioprinting method uses a customizable, printed silicone mold to house and plumb the printed tissue structure. Inside this mold, a grid of vascular channels is printed first, over which ink containing living stem cells is then printed. The inks are self-supporting and strong enough to hold shape as the structure's size increases with each layer of deposition.

At intersections meeting within the foundational vascular grid, vertical vascular pillars are printed, which interconnect a pervasive network of microvessels throughout all dimensions of the stem cell-laden tissue. After printing, a liquid composed of fibroblasts and extracellular matrix fills in the open regions around the 3D printed tissue, cross linking the entire structure.

The resulting soft tissue structure is replete with blood vessels, and via a single inlet and outlet on opposite ends of the chip, can be immediately perfused with nutrients to ensure survival of the cells. The pervasive vasculature facilitates stem cell differentiation by enabling delivery of cell growth factors throughout all areas of the tissue.

To achieve a variety of tissue shapes, thicknesses, and compositions, the shape of the printed silicone chip can be customized and the cell inks can be tuned to include a wide variety of cell types.

"Having the vasculature pre-fabricated within the tissue allows enhanced cell functionality at the deep core of the tissue, and gives us the ability to modulate those cell functions through the use of perfusable substances such as growth factors," said David Kolesky, a graduate researcher at the Wyss Institute and SEAS and one of the study's first authors.

"Jennifer and her team are shifting the paradigm in the field of tissue engineering based on their unique bioprinting approach," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology program at Boston Children's Hospital, and Professor of Bioengineering at SEAS.

"Their ability to build living 3D vascularized tissues from the bottom-up provides a potential way to form macroscale functional tissue replacements that can be surgically connected to the body's own blood vessels to provide immediate perfusion of these artificial tissues, and thus, greatly increase their likelihood of survival. This would overcome many of the problems that held back tissue engineering from clinical success in the past."

In addition to Lewis and Kolesky, other team members on the new study include co-first authors Kimberly Homan, Ph.D., Research Associate at the Wyss Institute, and Mark Skylar-Scott, Ph.D., Postdoctoral Fellow at the Wyss Institute.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Braille maps for blind and visually impaired created with 3-D printer
Piscataway NJ (SPX) Mar 02, 2016
Using a high-tech 3-D printer, a Rutgers undergraduate and his professor created sophisticated braille maps to help blind and visually impaired people navigate a local training center. The three plastic tactile maps are for each floor at the Joseph Kohn Training Center, a state-funded facility for the blind and visually impaired in New Brunswick. And the goal is to print maps for all of th ... read more


TECH SPACE
NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

TECH SPACE
Monster volcano gave Mars extreme makeover: study

SSL developing robotic sample handling assembly for Mars 2020

MAVEN Observes Mars Moon Phobos in the Mid- and Far-Ultraviolet

Rover begins contact science of rock target on Knudsen Ridge

TECH SPACE
Less connectivity improves innovation

Orion launch abort motor case passes structural qualification test

Launch America: Suni Williams on Commercial Crew

Orion Solar Array Wing Deployment Test is a Success

TECH SPACE
Moving in to Tiangong 2

Logistics Rule on Tiangong 2

China to launch second space lab Tiangong-2 in Q3

China's moon lander Chang'e-3 enters 28th lunar day

TECH SPACE
International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

TECH SPACE
At last second, SpaceX delays satellite launch again

Arianespace Soyuz to launch 2 Galileo satellites in May

SpaceX postpones rocket launch again

Russian rocket engines ban could leave US space program in limbo

TECH SPACE
Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

TECH SPACE
University of Kentucky physicist discovers new 2-D material that could upstage graphene

Disney automated system lets characters leap and bound realistically in virtual worlds

New catalyst makes hydrogen peroxide accessible to developing world

Research demonstrates that air data can be used to reconstruct radiological releases




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement