. 24/7 Space News .
EARTH OBSERVATION
Satellites and shipwrecks
by Staff Writers
Greenbelt MD (SPX) Mar 14, 2016


In this natural color Landsat OLI image, long sediment plumes extend from the wreck sites of the SS Sansip and SS Samvurn. Insets show elevation models of the wrecks on the seafloor. Image courtesy NASA/USGS Landsat image/Jesse Allen, NASA Earth Observatory. For a larger version of this image please go here.

An estimated 3 million shipwrecks are scattered across the planet's oceans. Most maritime mishaps take place close to shore where hazards to navigation - such as rocks, reefs, other submerged objects and vessel congestion - are abundant. While there is a romantic association of shipwrecks and buried treasure, it is desirable to know where they are located for many other practical reasons.

The ships may be of historical significance or, if the hard substrate of the ship has created a reef, of ecological significance. Modern-era shipwrecks are also commonly sources of pollution, leaking onboard fuel and corroded heavy metals. Nearshore shipwrecks can be navigational hazards themselves.

Researchers have found that shipwrecks near the coast can leave sediment plumes at the sea's surface that help reveal their location. Using data from the NASA/USGS Landsat 8 satellite, researchers have detected plumes extending as far as 4 kilometers (about 2.5 miles) downstream from shallow shipwreck sites. This discovery demonstrates for the first time how Landsat and Landsat-like satellites may be used to locate the watery graves of coastal shipwrecks.

A quarter of all shipwrecks may rest in the North Atlantic. In the narrow southern end of the North Sea, where the English coast is only 100 miles from the shores of Belgium and the Netherlands, World War II-era shipwrecks are plentiful.

In this area, mines, submarines, other submersibles and warships targeted cargo ships sailing between Allied countries and Dutch and Belgian ports. The potential negative environmental impacts of these modern-era shipwrecks are substantial enough that the Council of Europe's Parliamentary Assembly has recommended they be mapped and monitored.

While airborne lidar (which uses light pulses to measure distance) can be used to detect shipwrecks close to shore and multibeam echosounders and other sound-based methods can be used anywhere deep enough for a survey vessel to sail, the former method requires clear water and cost prohibits both methods from being used to conduct exhaustive coastal surveys.

A new study published in the Journal of Archaeological Science by authors Matthias Baeye and Michael Fettweis, from the Royal Belgian Institute of Natural Sciences; Rory Quinn from Ulster University in Northern Ireland; and Samuel Deleu from Flemish Hydrography, Agency for Maritime and Coastal Services, aims to change things. The authors have found a way to use freely available Landsat satellite data to detect shipwrecks in sediment-laden coastal waters.

Their study, conducted in a coastal area off of the Belgium port of Zeebrugge, relied on a detailed multibeam echosounder survey of wreck sites, previously conducted by the Flemish government. This part of the Belgian coast is strewn with shipwrecks, in often sediment-laden waters.

The researchers started with the known location of four fully submerged shipwrecks in their study site: the SS Sansip, which the authors explain was a 135 m (443 foot) U.S. Liberty ship that sank after striking a mine in December 1944; the SS Samvurn, a similar ship that met the same fate the very next month; as well as the SS Nippon, a ship that sank after a maritime collision in 1938; and the SS Neutron, a small 51 m (167 foot) steel cargo vessel that fell victim to an uncharted navigation hazard, presumed to be the SS Sansip.

Using 21 Landsat 8 images and tidal models, the researchers mapped sediment plumes extending from the wreck locations. They found that the two ships with substantial portions of their structure unburied created sediment plumes that could be traced downstream during ebb and flood tides.

The authors postulate that the exposed structure of these ships created scour pits that then fill with fine sediments (sand, clay, organic matter, etc.) during slack tides (the period of relatively still currents between ebb and flood tides). These scour pits then serve as sediment repositories from which sediments are re-suspended during flood and ebb tides. When these sediments reach the surface, they create their telltale plumes.

Uncharted shipwrecks could be located by using the researchers' methodology in reverse - i.e., mapping sediment plumes during various tidal stages and then following the plumes upstream to their point of origin.

The study looked at shipwrecks in waters as deep as 15 m (50 feet); depth is an essential consideration as the re-suspended sediment plumes must reach the surface to be detected by optical satellites like Landsat.

Given that coastal waters are typically shallow, often sediment-laden, and where most shipwrecks occur, this new shipwreck detection method could prove useful for marine archaeologists.

The Landsat Program is a series of Earth observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. Landsat 8, designed with many evolutionary advances, launched in 2013.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
Virtual time machine of Earth's geology now in the cloud
Sydney, Australia (SPX) Mar 10, 2016
How did Madagascar once slot next to India? Where was Australia a billion years ago? Cloud-based virtual globes developed by a team led by University of Sydney geologists mean anyone with a smartphone, laptop or computer can now visualise, with unprecedented speed and ease of use, how the Earth evolved geologically. Reported in PLOS ONE, the globes have been gradually made available since ... read more


EARTH OBSERVATION
China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

EARTH OBSERVATION
Mars robot launch now scheduled for May 2018: NASA

Proton-M carrier rocket assembled ahead of Mars Mission

Great tilt gave Mars a new face

Space simulation crew hits halfway mark til August re-entry

EARTH OBSERVATION
Greece tourism insists on sunny outlook amid refugee crisis

First tomatoes, peas harvested from mock Martian farm

Commercial Crew: Building in Safety from the Ground Up in a Unique Way

Russian company set to usher in era of suborbital tourism

EARTH OBSERVATION
Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

Moving in to Tiangong 2

Logistics Rule on Tiangong 2

EARTH OBSERVATION
International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

EARTH OBSERVATION
Ariane 5 launch contributes to Ariane 6 development

SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

At last second, SpaceX delays satellite launch again

EARTH OBSERVATION
Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

EARTH OBSERVATION
Clothes of the future will adjust to the weather, body temperature

UMass Amherst team offers new, simpler law of complex wrinkle patterns

First code of conduct for the use of virtual reality established

New laser achieves wavelength long sought by laser developers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.