Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
SMAP ends radar operations
by Staff Writers
Pasadena CA (JPL) Sep 03, 2015


NASA's Soil Moisture Active Passive (SMAP) mission will produce high-resolution global maps of soil moisture to track water availability around our planet and guide policy decisions. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

Mission managers for NASA's Soil Moisture Active Passive (SMAP) observatory have determined that its radar, one of the satellite's two science instruments, can no longer return data. However, the mission, which was launched in January to map global soil moisture and detect whether soils are frozen or thawed, continues to produce high-quality science measurements supporting SMAP's objectives with its radiometer instrument.

The SMAP mission is designed to help scientists understand the links between Earth's water, energy and carbon cycles and enhance our ability to monitor and predict natural hazards like floods and droughts. SMAP remains an important data source to aid Earth system modeling and studies. SMAP data have additional practical applications, including improved weather forecasting and crop yield predictions.

The SMAP spacecraft continues normal operations, and the first data release of soil moisture products is expected in late September.

"Although some of the planned applications of SMAP data will be impacted by the loss of the radar, the SMAP mission will continue to produce valuable science for important Earth system studies," said Dara Entekhabi, SMAP Science Team lead at the Massachusetts Institute of Technology in Cambridge.

On July 7, SMAP's radar stopped transmitting due to an anomaly involving the radar's high-power amplifier (HPA). The HPA is designed to boost the power level of the radar's pulse to more than 500 watts, ensuring the energy scattered from Earth's surface can be accurately measured.

The SMAP project at NASA's Jet Propulsion Laboratory in Pasadena, California, formed an anomaly team to investigate the HPA issue and determine whether normal operation could be recovered. A series of diagnostic tests and procedures was performed on both the spacecraft and on the ground using flight spare parts.

Following an unsuccessful attempt on Aug. 24 to power up the radar unit, the project had exhausted all identified possible options for recovering nominal operation of the HPA and concluded the radar is likely not recoverable.

NASA has appointed a mishap investigation board to conduct a comprehensive review of the circumstances that led to the HPA anomaly in order to determine how the anomaly occurred and how such events can be prevented on future missions. JPL also will convene a separate failure review board that will work with the NASA investigation.

SMAP was launched Jan. 31 and began its science mission in April, releasing its first global maps of soil moisture on April 21. To date, the mission has collected more than four months of science data, almost three months with the radar operating. SMAP scientists plan to release beta-quality soil moisture data products at the end of September, with validated data planned for release in April 2016.

SMAP's radar allowed the mission's soil moisture and freeze-thaw measurements to be resolved to smaller regions of Earth - about 5.6 miles (9 kilometers) for soil moisture and 1.9 miles (3 kilometers) for freeze-thaw. Without the radar, the mission's resolving power will be limited to regions of almost 25 miles (40 kilometers) for soil moisture and freeze-thaw. The mission will continue to meet its requirements for soil moisture accuracy and will produce global soil moisture maps every two to three days.

SMAP's active radar and passive radiometer instruments are designed to complement each other and mitigate the limitations of each measurement alone. The radar enabled high-resolution measurements of up to 1.9 miles, but with lower accuracy for sensing surface soil moisture. In contrast, the microwave radiometer is more accurate in its measurements, but has lower resolution of about 25 miles. By combining the active and passive measurements, SMAP was designed to estimate soil moisture at a resolution of about 5.6 miles.

The nearly three months of coincident measurements by the two instruments are a first of their kind. The combined data set allows scientists to assess the benefit of this type of combined measurement approach for future missions. Scientists now are developing algorithms to produce a freeze-thaw data product at 25-mile resolution from the radiometer data. They also are evaluating whether the 25-mile radiometer soil moisture resolution can be improved.

Based on the available SMAP mission data, scientists have identified other useful science measurements that can be derived from the radiometer data, such as sea surface salinity and high winds over the ocean surface. Over the next several months, the SMAP project and NASA will work to determine how to implement these new measurements into the project's data products.

SMAP is managed for NASA's Science Mission Directorate in Washington by JPL, with instrument hardware and science contributions made by NASA's Goddard Space Flight Center in Greenbelt, Maryland. JPL built the spacecraft and is responsible for project management, system engineering, radar instrumentation, mission operations and the ground data system. Goddard is responsible for the radiometer instrument and science data products.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
SMAP at NASA
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARTH OBSERVATION
First global antineutrino emission map highlights Earth's energy budget
College Park MD (SPX) Sep 02, 2015
The neutrino and its antimatter cousin, the antineutrino, are the tiniest subatomic particles known to science. These particles are byproducts of nuclear reactions within stars (including our sun), supernovae, black holes and human-made nuclear reactors. They also result from radioactive decay processes deep within the Earth, where radioactive heat and the heat left over from the planet's format ... read more


EARTH OBSERVATION
Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

EARTH OBSERVATION
ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

One year and counting: Mars isolation experiment begins

EARTH OBSERVATION
In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

French woman wins disability grant for 'gadget allergy'

EARTH OBSERVATION
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

EARTH OBSERVATION
First Dane in space begins long trip to repositioned ISS

ISS Crew Redocks Soyuz Spacecraft

CALET docks on the International Space Station

Astronaut Andreas to try sub-millimetre precision task on Earth from orbit

EARTH OBSERVATION
FCube facility enters operations with fueling of Soyuz Fregat upper stage

SpaceX delays next launch after blast

GSLV Launches India's Latest Communication Satellite GSAT-6

Preparations with both passengers ongoing at Kourou

EARTH OBSERVATION
Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

Solar System formation don't mean a thing without that spin

EARTH OBSERVATION
Paper tubes make stiff origami structures

Long-sought chiral anomaly detected in crystalline material

Metallic gels produce tunable light emission

An engineered surface unsticks sticky water droplets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.