Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Rutgers Physics Professors Find New Order in Quantum Electronic Material
by Staff Writers
New Brunswick, NJ (SPX) Feb 01, 2013


Piers Coleman and Premala Chandra.

Two Rutgers physics professors have proposed an explanation for a new type of order, or symmetry, in an exotic material made with uranium - a theory that may one day lead to enhanced computer displays and data storage systems and more powerful superconducting magnets for medical imaging and levitating high-speed trains.

Their discovery, published in this week's issue of the journal Nature, has piqued the interest of scientists worldwide. It is one of the rare theory-only papers that this selective publication accepts. Typically the journal's papers describe results of laboratory experimentation.

Collaborating with the Rutgers professors was a postdoctoral researcher at Massachusetts Institute of Technology (MIT) who earned her doctorate at Rutgers.

"Scientists have seen this behavior for 25 years, but it has eluded explanation." said Piers Coleman, professor in the Department of Physics and Astronomy in the School of Arts and Sciences. When cooled to 17.5 degrees above absolute zero or lower (a bone-chilling minus 428 degrees Fahrenheit), the flow of electricity through this material changes subtly.

The material essentially acts like an electronic version of polarized sunglasses, he explains. Electrons behave like tiny magnets, and normally these magnets can point in any direction. But when they flow through this cooled material, they come out with their magnetic fields aligned with the material's main crystal axis.

This effect, claims Coleman, comes from a new type of hidden order, or symmetry, in this material's magnetic and electronic properties. Changes in order are what make liquid crystals, magnetic materials and superconductors work and perform useful functions.

"Our quest to understand new types of order is a vital part of understanding how materials can be developed to benefit the world around us," he said.

Similar discoveries have led to technologies such as liquid crystal displays, which are now ubiquitous in flat-screen TVs, computers and smart phones, although the scientists are quick to acknowledge that their theoretical discovery won't transform high-tech products overnight.

Coleman, along with Rutgers colleague Premala Chandra and MIT collaborator Rebecca Flint, describe what they call a "hidden order" in this compound of uranium, ruthenium and silicon. Uranium is commonly known for being nuclear reactor fuel or weapons material, but in this case physicists value it as a heavy metal with electrons that behave differently than those in common metals.

Recent experiments on the material at the National High Magnetic Field Laboratory at Los Alamos National Laboratory in New Mexico provided the three physicists with data to refine their discovery.

"We've dubbed our fundamental new order 'hastatic' order, named after the Greek word for spear," said Chandra, also a professor in the Department of Physics and Astronomy. The name reflects the highly ordered properties of the material and its effect on aligning electrons that flow through it.

"This new category of order may open the world to new kinds of materials, magnets, superconductors and states of matter with properties yet unknown," she said. The scientists have predicted other instances where hastatic order may show up, and physicists are beginning to test for it.

The scientists' work was funded by the National Science Foundation and the Simons Foundation. Flint is a Simons Postdoctoral Fellow in physics at MIT.

.


Related Links
Department of Physics and Astronomy at Rutgers
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
NIST's 'nanotubes on a chip' may simplify optical power measurements
Washington DC (SPX) Jan 29, 2013
The National Institute of Standards and Technology (NIST) has demonstrated a novel chip-scale instrument made of carbon nanotubes that may simplify absolute measurements of laser power, especially the light signals transmitted by optical fibers in telecommunications networks. The prototype device, a miniature version of an instrument called a cryogenic radiometer, is a silicon chip topped ... read more


CHIP TECH
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

CHIP TECH
AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

CHIP TECH
Sierra Nevada Corporation and Lockheed Martin Space Systems Company Partner On Dream Chaser Programs

NASA Launches Next-Gen Communications Satellite

NASA Takes Strides Forward to Launch Americans from U.S. Soil

Iran Takes First Step to Send Man to Space

CHIP TECH
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

CHIP TECH
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

CHIP TECH
Site of space rocket launch to become home of S. Korea's space program

Payload preps continue for first Ariane 5 flights of 2013

NASA Wallops Rocket Mission January 29 Prepping for Future Projects

Russia's Troubled Rocket Cleared for Launch

CHIP TECH
TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought

The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

CHIP TECH
NTU research embraces laser and sparks cool affair

Bioinspired fibers change color when stretched

Stanford Researchers Break Million-core Supercomputer Barrier

Scientists trick iron-eating bacteria into breathing electrons instead




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement