![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Novosibirsk (Sputnik) Jan 04, 2016
Russian scientists plan to develop a dark matter detection prototype within one to two years, the Siberian Branch of Russian Academy of Science's senior nuclear physics research official said Sunday. "We know that [dark matter] leaves almost no traces and our main task is to dramatically lower the detection threshold to a minimum, which is physically possible in principle. There is quite substantial progress and we hope that a prototype of this detector can be created in the next year or two," said Yuri Tikhonov, Budker Institute of Nuclear Physics deputy director in charge of research. Tikhonov noted that the detector would search for the elusive space material with the help of condensed inert gases, including argon. He said scientists have identified argon as the gas most suitable for ensuring the detection threshold to register dark matter's nuclei recoils. "These results will serve as the basis for creating a dark matter detector. You need low-background underground laboratories, such as the Gran Sasso in Italy. We have been invited to cooperate there with a big experiment," he said. The work is being carried out with funding from the Russian Science Foundation, Tikhonov added. "The scale of preparation for such an experiment is five to seven years. It is an enormous installation of tens of tonnes of liquid argon. I think that the construction will be close to completion this decade. But the worldwide goal is to find dark matter by 2023-25," he said. Dark matter does not emit electromagnetic radiation, and remains immune to direct observation. Astrophysicists have so far only observed gravitational effects of dark matter on cosmic objects, such as galaxies and galaxy clusters. Indirect observations include searching for excess gamma ray emissions, which may be the product of weakly interacting massive particle (WIMP) decay. The theoretical WIMPs are thought to be the main component of dark matter. Source: Sputnik News
Related Links Roscosmos Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |