. 24/7 Space News .
CHIP TECH
Russian physicists discover a new approach for building quantum computers
by Staff Writers
Moscow, Russia (SPX) Jul 27, 2016


A multi-level quantum system - ququart. Image courtesy of the authors of study. For a larger version of this image please go here.

Physicists from MIPT and the Russian Quantum Center have developed a method which is going to make it easier to create a universal quantum computer - they have discovered a way of using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements - qubits.

Professor Vladimir Man'ko, Scientific Supervisor of MIPT's Laboratory of Quantum Information Theory and member of staff at the Lebedev Physical Institute, Aleksey Fedorov, a member of staff at the Russian Quantum Center, and his colleague Evgeny Kiktenko published the results of their studies of multilevel quantum systems in a series of papers in Physical Review A, Physics Letters A, and also Quantum Measurements and Quantum Metrology.

"In our studies, we demonstrated that correlations similar to those used for quantum information technologies in composite quantum systems also occur in non-composite systems - systems which we suppose may be easier to work with in certain cases. In particular, in our latest paper we proposed a method of using entanglement between internal degrees of freedom of a single eight-level system to implement the protocol of quantum teleportation, which was previously implemented experimentally for a system of three two-level systems," says Vladimir Man'ko.

Quantum computers, which promise to bring about a revolution in computer technology, are intended to be built from elementary processing elements called quantum bits - qubits.

While elements of classical computers (bits) can only be in two states (logic zero and logic one), qubits are based on quantum objects that can be in a coherent superposition of two states, which means that they can encode the intermediate states between logic zero and one. When a qubit is measured, the outcome is either a zero or a one with a certain probability (determined by the laws of quantum mechanics).

In a quantum computer, the initial condition of a particular problem is written in the initial state of the qubit system, then the qubits enter into a special interaction (determined by the specific problem), and finally, the user reads the answer to the problem by measuring the final states of the quantum bits.

Quantum computers will be able to solve certain problems that are currently far beyond the reach of even the most powerful classical supercomputers. In cryptography, for example, the time required for a conventional computer to break the RSA algorithm, which is based on the prime factorization of large numbers, would be comparable to the age of the Universe. A quantum computer, on the other hand, could solve the problem in a matter of minutes.

However, there is a significant obstacle standing in the way of a quantum revolution - the instability of quantum states. Quantum objects that are used to create qubits - ions, electrons, Josephson junctions etc. can only maintain a certain quantum state for a very short time.

However, calculations not only require that qubits maintain their state, but also that they interact with one another. Physicists all over the world are trying to extend the lifespan of qubits. Superconducting qubits used to "survive" only for a few nanoseconds, but now they can be kept for milliseconds before decoherence - which is closer to the time required for calculations.

In a system with dozens or hundreds of qubits, however, the problem is fundamentally more complex.

Man'ko, Fedorov, and Kiktenko began to look at the problem from the other way around - rather than try to maintain the stability of a large qubit system, they tried to increase the dimensions of the systems required for calculations. They are investigating the possibility of using qudits rather than qubits for calculations.

Qudits are quantum objects where the number of possible states (levels) is greater than two (their number is denoted by the letter D). There are qutrits with three states, ququarts (four states) etc. Algorithms are now actively being studied in which the use of qudits could prove to be more beneficial than using qubits.

"A qudit with four or five levels is able to function as a system of two "ordinary" qubits, and eight levels is enough to imitate a three-qubit system. At first we saw this as a mathematical equivalence allowing us to obtain new entropic correlations. For example, we obtained the value of mutual information (the measure of correlation) between virtual qubits isolated in a state space of a single four-level system," says Fedorov.

He and his colleagues demonstrated that on one qudit with five levels, created using an artificial atom, it is possible to perform full quantum computations, in particular the realization of the Deutsch algorithm. This algorithm is designed to test the values of a large number of binary variables.

It can be called the fake coin algorithm: imagine that you have a number of coins, some of which are fake - they have the same image on the obverse and reverse sides. To find these coins using the "classical method", you have to look at both sides. With the Deutsch algorithm you "merge" the obverse and reverse sides of the coin and you can then see a fake coin by only looking at one side.

The idea of using multilevel systems to emulate multi-qubit processors was proposed earlier in the work of Russian physicists from the Kazan Physical-Technical Institute. To run a two-qubit Deutsch algorithm, for example, they proposed using a nuclear spin of 3/2 with four different states. In recent years, however, experimental progress in creating qudits in superconducting circuits has shown that they have a number of advantages.

However, superconducting circuits require five levels: the last level performs an ancillary role to allow for a complete set of all possible quantum operations.

"We are making significant progress, because in certain physical implementations it is easier to control multilevel qudits than a system of the corresponding number of qubits, and this means that we are one step closer to creating a full-fledged quantum computer. Multilevel elements offer advantages in other quantum technologies too, such as quantum cryptography," says Fedorov.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Hybrid Computers Set to Shine
Tokyo (JPN) Jul 27, 2016
The decline of the global PC market is fueling expectations that so-called 'hybrid,' or 'detachable' tablets will eventually become the next hot item. Chip making titan Intel Corp. is betting that the time is now. Also known as "2-in-1" computers, detachables are a result of technological marriage; they are built using standard portable PC components, but are light and thin and can transfo ... read more


CHIP TECH
Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

CHIP TECH
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

CHIP TECH
Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

Sensor Technology Could Revolutionize What You Sleep On

CHIP TECH
China commissions space tracking ship as new station readied

China's second space lab Tiangong-2 reaches launch center

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

CHIP TECH
Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

NASA Highlights Space Station Research Benefits, Opportunities at San Diego Conference

CHIP TECH
Intelsat 33e arrives at the Spaceport for Arianespace's August launch with Ariane 5

Commission approves acquisition of Arianespace by ASL, subject to conditions

SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

CHIP TECH
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

CHIP TECH
An accelerated pipeline to open materials research

NUS scientists develop plastic flexible magnetic memory device

Scientists grow dandelions to make rubber

Scientists create new thin material that mimics cell membranes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.