. 24/7 Space News .
TIME AND SPACE
Roton quasiparticles observed in quantum gas
by Staff Writers
Innsbruck, Austria (SPX) Mar 06, 2018

A cigar-shaped gas of magnetic atoms can support a roton mode: a modulation in the atom spatial organization at a given wavelength, forming a saddle on the energy mountain ridge of its elementary excitations.

Discovered in liquid helium about 80 years ago, superfluidity is a counterintuitive phenomenon, in which quantum physics and particle-wave duality manifest at the macroscopic level. Since then, it has yielded many advances in understanding quantum matter, yet leaving mysterious some of its features. A hallmark of superfluidity is the existence of so-called "quasi-particles", i.e. elementary excitations dressed by interactions.

The behavior of such a special fluid is mainly dictated by two types of excitations at low temperature, as their moderate energy cost allows to easily excite them. The first ones are the phonon modes, the well-known long-wavelength sound-wave quanta. The second ones, much more bizarre and intriguing, are massive quasi-particles named rotons.

They have large momenta, and, contrarily to the common (quasi)particles for which the energy increases with the momentum, the roton dispersion relation exhibits a minimum at a finite momentum, called roton momentum.

This unusual behavior expresses the tendency of the fluids to build up short-wavelength density modulation in space, precursor of a crystallization instability. This behavior arises from a remarkable crosstalk (or correlations) between the particles, owing to the extremely high density of the fluid.

Ultracold quantum gases and, in particular, Bose-Einstein condensates, first realized in 1995, offer another paradigm of superfluidity, where, because of the much lower densities, the roton mode is absent. However, in 2003, theoreticians suggested that roton excitations might also occur in gaseous condensates for special types of interactions among particles.

In their view, magnetic atoms with their long-range and anisotropic dipole-dipole interaction would make possible to introduce remarkable correlations between the particles, leading to a roton dispersion relation.

Now, thanks to the theory input from Luis Santos's research group at the University of Hannover and from Rick van Bijnen of the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences, the team led by Francesca Ferlaino at the Department of Experimental Physics of the University of Innsbruck and the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences has demonstrated roton excitations in a dipolar quantum gas for the first time.

Roton observed in dipolar quantum gas
In an international first the Innsbruck scientists realized a Bose-Einstein condensate of erbium atoms in 2012. The strong magnetic character of these atoms leads to an extreme dipolar behavior of the quantum system. With this model system, they have already been able to detect several dipolar few- and many-particle effects.

The group has now succeeded in preparing a Bose-Einstein condensate of about 100,000 erbium atoms in such a way that a roton mode arises. "We use a cigar-shaped trap of laser light and orient the atomic dipoles transversely to it thanks to a magnetic field," explains first author Lauriane Chomaz.

In this geometry, the atomic dipoles attract each other when they sit along the short direction of the cigar and repel when they sit along the long one.

"The long-range character of the dipolar interaction introduces a cross-talk between the different directions of the cigar trap and the attractive/repulsive features of the interaction in this trap". This energetically favors a modulation of the cloud along the long direction of the cigar, with a wavelength matching the cigar short length. This is the roton excitation.

"By additionally quenching the strength of the interparticle interactions, we can populate the roton mode," says Chomaz.

New focus on supersolidity
The successful detection of this long-awaited quasiparticle paves the way for further research into superfluidity. In addition, it also creates possibilities to explore a paradoxical state of matter that simultaneously shows both the properties of solids and superfluids. The first evidence of supersolid states was presented last year in hybrid systems of atoms and light.

Magnetic atoms could offer a different perspective to direct access supersolid phase of matter, the Innsbruck researchers are convinced. Finally, this breakthrough confirms the potentialities offered by dipolar gases toward new paradigms of quantum fluids, as also previously demonstrated with the discovery of dipolar quantum droplets in the group of Tilman Pfau in Stuttgart.

Research Report: Observation of roton mode population in a dipolar quantum gas. Lauriane Chomaz, Rick M. W. van Bijnen, Daniel Petter, Giulia Faraoni, Simon Baier, Jan Hendrik Becher, Manfred J. Mark, Falk Wachtler, Luis Santos, Francesca Ferlaino. Nature Physics 2018 DOI: 10.1038/s41567-018-0054-7


Related Links
University of Innsbruck
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists discover atoms inside the orbiting electrons of a 'giant atom'
Washington (UPI) Feb 26, 2018
Scientists have discovered an atom filled with atoms. The atom's electrons orbit at such a great distance that there's room for other atoms. The atoms within the "giant atom" form weak bonds, producing a new exotic state of matter - what scientists have dubbed "Rydberg polarons." The discovery combines a pair of atomic phenomenon, both of which can only be studied under extremely cold conditions: Bose-Einstein condensates and Rydberg atoms. A Bose-Einstein condensate is a unique ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Keeping astronauts safe in inflatable habitats

NASA, partners seek input on standards for deep space technologies

NASA Team outfits Orion for abort test with lean approach

Knowledge matters for Year of Education on Station

TIME AND SPACE
NASA team outfits Orion for abort test with lean approach

SpaceX carries out 50th launch of Falcon 9 rocket

GOES-S marks 100th launch of Rocketdyne AJ-60A solid rocket booster

Action plan approved for next Ariane 5 launches

TIME AND SPACE
The Case of the Martian Boulder Piles

Dyes for 'live' extremophile labeling will help discover life on Mars

Mars Express views moons set against Saturn's rings

Curiosity tests a new way to drill on Mars

TIME AND SPACE
Satellite will test plan for global China led satcom network

China plans rocket sea-launch

China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

TIME AND SPACE
ESA incubators ranked among world's best

Iridium Certus readies for takeoff with aviation service providers

Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

TIME AND SPACE
Latest Updates from NASA on IMAGE Recovery

Virtual predator is self-aware, behaves like living counterpart

Common bricks can be used to detect past presence of uranium, plutonium

Majorana runners go long range: New topological phases of matter unveiled

TIME AND SPACE
Chemical sleuthing unravels possible path to forming life's building blocks in space

Do you know where your xenon is?

Tesla in space could carry bacteria from Earth

Hubble observes exoplanet atmosphere in more detail than ever before

TIME AND SPACE
You are entering the Jovian Twilight Zone

The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?

Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.