. 24/7 Space News .
SPACE TRAVEL
Rooting for Answers: Simulating G-Force to Test Plant Gravity Perception in Mustard Seedlings
by Morgan McAllister for JSC News
Houston TX (SPX) Mar 23, 2018

Seeds are aligned along a membrane within the cassette and germinated before their exposure to simulated gravity within the EMCS.

When plants on Earth search for nutrients and water, what drives their direction? Very simply, gravitational force helps them find the easiest path to the substances they need to grow and thrive. What happens if gravity is no longer part of the equation?

Botanists from Ohio Weslyan University leverage the microgravity environment of the International Space Station to study root growth behaviors and sensory systems in an investigation known as Gravity Perception Systems (Plant Gravity Perception). The researchers look for adaptability to microgravity and measure overall sensitivity to simulated gravity for two strains of mustard seedlings, including Arabidopsis thaliana Wild Type and a starchless genetic variant. Within the wild type, starch acts like a weight, falling within the root tips and driving them toward the Earth.

As the lead investigator for Plant Gravity Perception, botanist Chris Wolverton describes the investigation's central question: "We want to know - what's the least amount of gravity plants can detect to cause the falling of heavy [starchy] bodies in their cells?"

The study exposes both strains to incremental amounts of gravity ranging from four one thousandths or 0.004G - all the way up to one G. By comparison, gravitational force experienced on Earth is a constant one G.

Why include two types of seedlings? While exact thresholds for starchy strains are poorly understood, response mechanisms for starchless genetic variants are even more of a mystery.

Plant Gravity Perception uses acceleration from the European Modular Cultivation System (EMCS) to simulate gravity. Seedlings are first placed in seed cassettes, then aligned along radial blades of a centrifugal rotor. This lets investigators control the intensity of gravity experienced at any point along the rotational arms, testing hundreds of fractional degrees of gravity at a single time through controlled spins.

Much like the popular rides at carnivals that spin riders and cause them to "stick" to the walls, this investigation steadily increases g-force exposure to test the outer boundaries of seedlings' perceptual abilities. As the arms of the centrifuge spin, scientists hope to pinpoint exactly where growth response begins.

Most interesting of all may be the starchless plants' responses. Even for those without starch, the mutant form of the seedlings may still retain the same sensory perception system as their cousins. These plants may still sense gravity but respond only at higher thresholds, be unable to move at all, or use entirely different cues to determine growth direction. When the centrifuge's acceleration is turned off, scientists can also measure seedling response to microgravity and establish a baseline.

As photosynthetic organisms, plants are also very sensitive to light cues for growth. Using directed lights, Plant Gravity Perception is providing additional growth cues at varying points to test relationship between light perception and gravity perception. Back at home, botanists can watch the footage to assess responses.

Even though the orbiting laboratory is regularly resupplied, crew members must consume fresh deliveries quickly. To supplement a large supply of shelf stable foods, space station investigations such as Veg-03 enable astronauts to act as gardeners and supplement their diets with the hopes of adding nutritional variety and reducing resupply payload weight dedicated to food stores.

While seedlings from Plant Gravity Perception will not wind up on astronauts' plates, their studied growth furthers our knowledge of perceptual thresholds and makes selecting appropriate garden greens likely to thrive in space easier for future long duration spaceflight, including exploration missions beyond low-Earth orbit.

For Earth, Wolverton notes that gravity perception in roots "influences how efficient a plant is, how responsive it is to drought conditions, to flooding, to fertilizer."

He adds, "If we understood better how [gravity is] perceived... that opens up a whole source of trait breeding and genetic variation that we can look to." This would allow agriculturalists to select root growth appropriate for different fertilization levels, soil composition and environmental extremes.


Related Links
Johnson Space Center
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
Putting down roots in space
Houston TX (SPX) Feb 01, 2018
Plants grow just about everywhere on Earth, and are able to adapt to extreme conditions ranging from drought to disease. Spaceflight, however, exposes plants to stresses not found anywhere on their home planet. Growing plants aboard the International Space Station provides a unique opportunity to study how plants adapt to microgravity, and a team of researchers recently published results in "PLOS One" concerning plant adaptations at the genetic level. Understanding how spaceflight affects plants i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
China to become top patent filer within three years: UN

Two Americans, one Russian blast off for ISS

NASA science heading to space ranges from the upper atmosphere to microbes

60 years in orbit for 'grapefruit satellite' - the oldest human object in space

SPACE TRAVEL
Aerojet Rocketdyne Ships Starliner Re-entry Thrusters

SpaceX launches innovative secondary payload dispenser along side Hispasat

Air Force Chief of Staff: US 'On Track' to Replace Russian RD-180 Rocket Engine

Soyuz rocket rolled out for launch

SPACE TRAVEL
Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Martian oceans formed earlier but weren't as deep as previously thought, study finds

360 Video: Tour a Mars Robot Test Lab

SPACE TRAVEL
Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

SPACE TRAVEL
New laws unlock exciting space era for UK

Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

SPACE TRAVEL
New 'AR' Mobile App Features 3-D NASA Spacecraft

Diamond powers first continuous room-temperature solid-state maser

Reconsidering damage production and radiation mixing in materials

Raytheon contracted for Cobra Dane radar support

SPACE TRAVEL
UK team to lead European mission to study new planets

TRAPPIST-1 planets provide clues to the nature of habitable worlds

ESA's next science mission to focus on nature of exoplanets

'Oumuamua likely came from a binary star system

SPACE TRAVEL
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.