. 24/7 Space News .
STELLAR CHEMISTRY
Ring of Complex Organic Molecules Discovered Around Newborn Star
by Staff Writers
Tokyo, Japan (SPX) Jul 03, 2016


(Upper panel) A schematic illustration of the infalling gas around the protostar. A disk structure with a radius of about 50 AU exists around the protostar. The disk in turn is surrounded by an envelope of gas extended over a 200 AU scale. OCS exists in the envelope gas, while methyl formate mainly exists in the boundary area between the envelope gas and the disk structure. (Lower left) Intensity distribution of methyl formate (HCOOCH3) observed with ALMA. A structure elongated along A-B can be seen centered on the position of the protostar. Methyl formate is located within 50 AU from the protostar. (Lower right) Intensity distribution of OCS (carbonyl sulfide) observed with ALMA. A structure elongated along A-B can be seen centered on the position of the protostar position, similar to the case of OCS. However the distribution of OCS (~200 AU) is more extended than that of methyl formate. Image courtesy ALMA (ESO/NAOJ/NRAO), Oya et al. For a larger version of this image please go here.

Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered a rotating ring containing large organic molecules around a protostar. This observation definitively shows that organic materials formed in interstellar space are brought into the planet-forming region. Researchers also found that the molecular species brought into the planet-forming region vary from one protostar to another. Chemical composition is a new way to answer the long-standing question of whether or not the solar system is a typical example of a planetary system.

Astronomers have long known that organic molecules form in diffuse gas clouds floating between stars. It is thought that as the solar system formed 4.6 billion years ago, some of these organic molecules were transported from interstellar space to the planet forming disk. Later, these molecules played important roles in the chemical evolution resulting in the emergence of life on the Earth.

However, it is still unknown what kinds and quantities of organic molecules were actually supplied from interstellar space. Although radio astronomy observations during the last decade showed that saturated complex organic molecules, such as methanol (CH3OH) and methyl formate (HCOOCH3) [1], exist around solar-type protostars, their distributions were too compact to be resolved with the radio telescopes available at the time.

With ALMA, an international team lead by Yoko Oya, a graduate student of Department of Physics, The University of Tokyo, and Nami Sakai, an associate chief scientist of RIKEN, studied the distribution of various organic molecules around a solar-type protostar IRAS 16293-2422A at high spatial resolution.

They discovered a ring structure of complex organic molecules around the protostar. The radius of the ring is 50 times wider than the Earth's orbit. This size is comparable to the size of the solar system, and the ring structure most likely represents the boundary region between infalling gas and a rotating disk structure around the protostar.

The observations clearly showed the distribution of large organic molecules methyl formate (HCOOCH3) and carbonyl sulfide (OCS). Apparently the distribution of methyl formate is confined in a more compact area around the protostar than the OCS distribution, which mainly traces the infalling gas.

"When we measured the motion of the gas containing methyl formate by using the Doppler effect," said Oya "we found a clear rotation motion specific to the ring structure." In this way, they identified the rotating ring structure of methyl formate, although it is not resolved spatially. A similar ring structure is also found for methanol.

These saturated organic molecules are formed in interstellar space and are preserved on the surfaces of dust grains. Around the outer boundary of the disk structure, they evaporate due to shock generated by collisions of the disk and infalling material, and/or due to heating by the light from the baby star. This result is the first direct evidence that interstellar organic materials are indeed fed into the rotating disk structure that eventually forms a planetary system.

In 2014, the team found a similar ring structure of SO (sulfur monoxide) around another solar-type protostar L1527. In this source, unsaturated complex organic molecules such as CCH and cyclic-C3H2 are very abundant in the infalling gas, while SO preferentially exists in the boundary between the infalling gas and the disk structure. Although the physical structure in L1527 is similar to that found in IRAS 16293-2422A, the chemical composition is much different.

Saturated complex organic molecules are almost completely absent in L1527. The present result, taken together with previous results on L1527, clearly demonstrates for the first time that the materials delivered to a planetary system differ from star to star. A new perspective on chemical composition is thus indispensable for a thorough understanding of the origin of the solar system and the origin of life on the Earth.

Research paper: "Infalling-Rotating Motion and Associated Chemical Change in the Envelope of IRAS 16293-2422 Source A Studied with ALMA," Y. Oya et al., 2016 June 20, Astrophysical Journal


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Astronomical Observatory Of Japan
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
For Galaxies, It's Not Easy Being Green
Durham, UK (SPX) Jul 03, 2016
Scientists may have answered why green galaxies are rare in our universe and why their color could reveal a troubled past. Their research is presented 30 June at the National Astronomy Meeting at the University of Nottingham. The international team, led from Durham University's Institute for Computational Cosmology, used new computer modeling of the universe to investigate the colors that ... read more


STELLAR CHEMISTRY
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

STELLAR CHEMISTRY
Unusual form of sand dune discovered on Mars

ChemCam findings hint at oxygen-rich past on Mars

Mars Rover's Sand-Dune Studies Yield Surprise

Curiosity rover analysis suggests Mars has oxygen-rich history

STELLAR CHEMISTRY
Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

STELLAR CHEMISTRY
China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

China to launch second space lab Tiangong-2 in September

Upgraded "space shuttle bus" aboard new carrier rocket

STELLAR CHEMISTRY
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

STELLAR CHEMISTRY
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

STELLAR CHEMISTRY
When it comes to brown dwarfs, 'how far?' is a key question

What Happens When You Steam a Planet

How Planetary Age Reveals Water Content

Newborn Planet Discovered Around Young Star

STELLAR CHEMISTRY
Huge helium discovery 'a life-saving find'

OrbitOutlook integrates diverse network to help avoid collisions in space

Augmented reality helmet helps pilots see through clouds, fog

A shampoo bottle that empties completely - every last drop









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.