. 24/7 Space News .
ENERGY TECH
Reusing waste energy with 2-D electron gas
by Staff Writers
Sapporo, Japan (SPX) Nov 23, 2017


(a) In conventional semiconductors, electrons flow from the hot to the cold side with low mobility caused by ionized impurity. (b) In the newly developed semiconductor without the impurity, 2DEG can flow with high mobility.

Novel approach utilizes high mobility two-dimensional electron gas, boosting thermoelectric conversion efficiency.

More than 60% of the energy produced by fossil fuels is lost as heat. Thermoelectric energy conversion has attracted much attention as a way to convert waste heat from power plants, factories and cars into electricity. However, currently available technologies need improvement to become viable on industrial scales.

Researchers at Hokkaido University in Japan have proposed the use of high mobility electrons generated at a semiconductor interface called 2D electron gas (2DEG), which can improve the ability of thermoelectric materials to convert heat energy into electricity.

The researchers made a transistor on the 2DEG at the interface between two semiconducting materials, aluminum gallium nitride and gallium nitride. When an electric field was applied, concentrations of 2DEG could be modulated without reducing its high mobility. The 2DEG's "power factor," which is a measure of its electric power, is two to six times higher than most state-of-the-art thermoelectric materials.

Efficient thermoelectric energy conversion requires materials with high electrical conductivity, low thermal conductivity, and a large thermopower which is high voltage produced in response to the difference in temperatures across the material.

Current nanostructuring techniques have managed to significantly reduce the thermal conductivity of these materials, thus improving their performance. A high power factor is also necessary for efficient power generation, but improving it has been limited because it necessitates simultaneously increasing a material's thermopower and its electrical conductivity, which is difficult. Electrical conductivity has remained low due to ionized impurities in the material that suppress the mobility of electrons.

Applying an electric field to the transistor fabricated by the Hokkaido University researchers allows modulating both the material's thermopower and its electrical conductivity without suppressing its high mobility.

"Although the device cannot be used as a thermoelectric generator because it is too thin, the 2D electron gas approach should open avenues for further improving the performance of state-of-the-art thermoelectric materials," says Hiromichi Ohta, the lead author of the study published in the journal Advanced Science.

Research paper

ENERGY TECH
New computational method provides optimized design of wind up toys
Washington DC (SPX) Nov 27, 2017
A team of leading computer scientists has developed a novel computational system to aid the design and fabrication of wind-up toys, focusing on automating the intricate interior machinery responsible for the toys' wind-up motion. The new computational system includes analytic modeling of a wide variety of elemental mechanisms found in common wide-up toys, including their geometry and kinem ... read more

Related Links
Hokkaido University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

New motion sensors major step towards cheaper wearable technology

Can a magnetic sail slow down an interstellar probe

ENERGY TECH
Flat-Earther's self-launch plan hits a snag

Aerojet Rocketdyne supports ULA Delta II launch of JPSS-1

Old Rivals India, China Nurture New Rivalry in Satellite Launch Business

NASA launches next-generation weather satellite

ENERGY TECH
Gadgets for Mars

Ice shapes the landslide landscape on Mars

Previous evidence of water on Mars now identified as grainflows

Winds Blow Dust off the Solar Panels Improving Energy Levels

ENERGY TECH
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

ENERGY TECH
Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

Astronaut meets volcano

European Space Week starts in Estonia

ENERGY TECH
Booming life for 'PUBG' death-match computer game

3rd SES bids farewell to ANGELS satellite

New way to write magnetic info could pave the way for hardware neural networks

Borophene shines alone as 2-D plasmonic material

ENERGY TECH
First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

ENERGY TECH
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.