. 24/7 Space News .
CHIP TECH
Researchers transform slow emitters into fast light sources
by Staff Writers
Providence RI (SPX) Oct 26, 2015


Phosphors are efficient light emitters but they're not optimal for high-speed communications because they turn on and off slowly. Researchers from Brown and Harvard have now found a way to modulate light from phosphor emitters three orders of magnitude faster using phase-change materials (VO2, in this case), which could make phosphors useful in a range of new optoelectronic applications. Image courtesy Zia Lab / Brown University. For a larger version of this image please go here.

Researchers from Brown University, in collaboration with colleagues from Harvard, have developed a new way to control light from phosphorescent emitters at very high speeds. The technique provides a new approach to modulation that could be useful in all kinds of silicon-based nanoscale devices, including computer chips and other optoelectronic components.

"Our results demonstrate relatively fast modulation from fundamentally slow phosphorescent light emitters," said Rashid Zia, associate professor of engineering and physics at Brown and senior author of a new paper describing the work. "We think this could help make phosphors useful in a variety of new systems and settings."

Phosphors are common light emitters used in light bulbs, LEDs and elsewhere. They are extremely efficient because much of the energy pumped into them is converted to light as opposed to heat. But they have a slow optical lifetime, meaning it takes a relatively long time for them to return to the ground state after being excited. As a result, phosphors can't be turned on and off very quickly. Glow-in-the-dark toys, for example, take advantage of this property.

That property is bad, however, for optical modulation, a process that often involves flipping the light on and off to encode information. Because of their slow lifetimes, phosphors have traditionally been a non-starter for applications that require high-speed modulation.

But in this latest work, Zia and collaborators, including researchers from Shriram Ramanathan's group at Harvard University, took a different approach to modulation.

"Instead of changing how much light is coming out, which can only be done slowly in phosphor emitters, we came up with a system that changes another quality of that light, namely the color or spectrum of light emission, by rapidly changing the environment around the emitter," Zia said.

The work was led by Sebastien Cueff, a postdoctoral researcher in Zia's lab. Cueff started with an emitter made of erbium ions, an important phosphor that is widely used in fiber-optic telecommunication networks. He combined that with a material called vanadium dioxide (VO2). VO2 is a phase-change material that, when pumped with energy, changes very quickly from a transparent insulating state to a reflective metallic state.

This change in reflectivity, in turn, switches how nearby erbium ions emit light. As the VO2 changes phase, the erbium emissions go from being generated mostly by magnetic dipole transitions (the rotational torque push and pull of magnetic forces), to being generated mostly by electric dipole transitions (the linear push and pull of electric forces). Those two emission pathways have distinct spectra, and the modulation back and forth between the two can be used as a means to encode information.

The researchers showed that this direct modulation of light emission could be done as quickly as the VO2 phase could be changed, which is much faster than the speed at which erbium can be turned on and off. The test system used in these initial experiments showed that the system could be switched three orders of magnitude faster than the optical lifetime of erbium.

"Phosphorescent emitters have been considered impractical for high speed applications because of their intrinsically long lifetimes," Zia said. "Our results provide a simple way to circumvent this limitation and modulate their emission at high speeds."

And that could enable the use of phosphors in new applications. One example could be optical communications networks on computer chips.

Prototype on-chip networks have used semiconductor lasers as light emitters. They can modulate very quickly, but they have downsides. Semiconductors can't be grown directly on a silicon chip, so fabrication can be difficult. Using indirect means of modulation - interferometers, for example - makes for bulky systems that take up a lot of real estate on a chip. What's more, semiconductor lasers are not particularly efficient. They produce a lot of heat along with light, which is a problem on a silicon chip.

Erbium and other phosphors, on the other hand, can be deposited directly on silicon, making fabrication easier. And phosphors are highly efficient, so heat is less of a concern. There's still more work to be done to get such a system up to a speed that would be useful on a chip, but Zia and his colleagues think it's possible.

In this initial experiment, the researchers used a laser to zap the VO2 and cause it to change phase. A faster means of changing the VO2 phase - perhaps using electricity instead of a laser - could make the system much faster still.

Zia and his group plan to continue to refine the technique, but they describe this first set of experiments as an important proof of concept. "We ... hope that the device and concept presented here will engage both academic and industrial researchers working on optoelectronics and nanophotonics," the researchers write.

The paper is published in Nature Communications. Other authors on the paper were Dongfang Li (Brown), You Zhou (Harvard), Franklin J. Wong (Harvard), Jonathan A. Kurvits (Brown), and Shriram Ramanathan (Harvard). The work was supported by the Air Force Office of Scientific Research (FA9550-10-1-0026 and FA9550-12-1-0189), Army Research Office (W911NF-14-1-0669), Department of Education (P200A090076) and National Science Foundation (EECS-0846466 and EECS-1408009).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Light goes infinitely fast with new on-chip material
Boston MA (SPX) Oct 20, 2015
Electrons are so 20th century. In the 21st century, photonic devices, which use light to transport large amounts of information quickly, will enhance or even replace the electronic devices that are ubiquitous in our lives today. But there's a step needed before optical connections can be integrated into telecommunications systems and computers: researchers need to make it easier to manipulate li ... read more


CHIP TECH
Watch worn by US astronaut on Moon sells for $1.6 mn

Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

CHIP TECH
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

CHIP TECH
The Study of Science through Popular Movies

Reentry data will help improve prediction models

Hold on to your hoverboard: 'Back to the Future' is now

Journaling: Astronauts chronicle missions

CHIP TECH
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

CHIP TECH
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

CHIP TECH
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

CHIP TECH
Scientists Predict that Rocky Planets Formed from "Pebbles"

NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

CHIP TECH
Super-slick material makes steel better, stronger, cleaner

NASA Takes Lasercom a Step Forward

Studying Hypervelocity Impact Phenomena

Space Junk Predicted to Enter Earth's Atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.