. 24/7 Space News .
SHAKE AND BLOW
Researchers reproduce mechanism of slow earthquakes
by Staff Writers
University Park PA (SPX) Apr 01, 2016


Catastrophic earthquakes, the kind that destroy buildings and send people scurrying for doorways and safe locations, are caused when two tectonic plates that are sliding in opposite directions stick and then slip suddenly, releasing a large amount of energy, creating tremors and sometimes causing destruction.

Up until now catching lightning in a bottle has been easier than reproducing a range of earthquakes in the laboratory, according to a team of seismologists who can now duplicate the range of fault slip modes found during earthquakes, quiet periods and slow earthquakes.

"We were never able to make slow stick slip happen in the laboratory," said Christopher Marone, professor of geosciences, Penn State. "Our ability to systematically control stick velocity starts with this paper."

The research, led by John Leeman, Ph.D. candidate in geoscience and including Marone, Demian Saffer, professor of geosciences at Penn State and Marco Scuderi, a former Ph.D. student in geosciences now at Sapienza Universita di Roma, Italy, recreated the forces and motion required to generate slow earthquakes in the laboratory using ground quartz and a machine that can apply pressure on the materials altering stresses and other parameters to understand frictional processes.

"While regular earthquakes are catastrophic events with rupture velocities governed by elastic wave speed, the processes that underlie slow fault slip phenomena, including recent discoveries of tremor, slow-slip and low-frequency earthquakes, are less understood," the researchers report in this week's issue of Nature Communications.

Catastrophic earthquakes, the kind that destroy buildings and send people scurrying for doorways and safe locations, are caused when two tectonic plates that are sliding in opposite directions stick and then slip suddenly, releasing a large amount of energy, creating tremors and sometimes causing destruction.

Along regions of faults that do not produce earthquakes, the two sides of the fault slowly slip past each other in a stable fashion. Slow earthquakes occur somewhere between the stable regime and fast stick slip.

Regular earthquakes take place rapidly, while slow earthquakes occur on time scales that may range up to months. They can be as large as magnitude 7 or more and may be precursors to regular earthquakes.

However, slow earthquakes propagate slowly and do not produce high-frequency seismic energy. They exist in the regime between stable slipping and regular earthquakes.

The researchers applied stress perpendicular to the direction of shear and then applied forces to shear the ground quartz. By altering the amount of stress placed in the perpendicular direction, they could achieve the audible crack of a regular earthquake, stable slippage and a wide range of slip-stick behaviors including slow earthquake.

"What's really cool about this is that nobody has been able to systematically produce a slow earthquake, stable sticking, the whole range between a slow and fast earthquake," said Marone.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
The maximum earthquake magnitude for North Turkey
Potsdam, Germany (SPX) Mar 07, 2016
Geoscientists and natural disaster management experts are well aware of the risk prevailing in the megacity of Istanbul: The Istanbul metropolitan region faces a high probability for a large earthquake in the near future. The question is: how large can such an earthquake be? Scientists from the GFZ German Research Centre for Geosciences together with a colleague from the University of Sout ... read more


SHAKE AND BLOW
Ancient Polar Ice Reveals Tilting of Earth's Moon

Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

SHAKE AND BLOW
Opportunity moves to new locations to the southwest

Mars Express keeps watch on frosty Martian valleys

HiRISE: 45,000 Mars Orbits and Counting

ExoMars performing flawlessly

SHAKE AND BLOW
New DNA/RNA Tool to Diagnose, Treat Diseases

NASA Selects American Small Business, Research Institution Projects for Continued Development

British bacon sandwich en route to ISS tastes out of this world

China regulator frowns on Anbang's hotel bids: report

SHAKE AND BLOW
China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

SHAKE AND BLOW
Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

SHAKE AND BLOW
MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

SHAKE AND BLOW
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

SHAKE AND BLOW
For the first time scientists can observe the nano structure of food in 3-D

A new model for how twisted bundles take shape

Local fingerprint of hydrogen bonding captured in experiments

Microagents with revolutionary potential









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.