. 24/7 Space News .
ENERGY TECH
Researchers present new findings on magnetic spin waves
by Staff Writers
Mainz, Germany (SPX) Feb 12, 2016


This is a sketch of the thermal excitation of the magnetic sublattices, consisting of two Iron (Fe) and one Gadolinium (Gd) lattice sides: the excitation causes the emission of a magnetic spin wave, a so-called magnon, which propagates within the lattice. Image courtesy Andreas Kehlberger. For a larger version of this image please go here.

An international team of researchers gained new insights into magnetic spin waves. Spin waves can evolve in electrically non-conducting materials given a specific temperature gradient and then be converted into electrical energy in an adjacent metallic layer. Thus, thermal energy can be converted into electrical energy.

This recently discovered principle allows to think of new ways to recover waste heat and can improve a great variety of processes to be more energy-efficient and environmentally sustainable.

The joint research project involves researchers of Johannes Gutenberg University Mainz (JGU), the Walther Meibner Institute for Low Temperature Research in Garching, Tohoku University in Japan, and Delft University of Technology in the Netherlands. The resulting research paper was published in the scientific journal Nature Communications.

Spin waves, or magnons, are fundamental excitations in magnetic materials which transport energy and angular momentum. The latter allows to make use of them for the transmission of information within magnetic solids.

Since their existence is bound to that of magnetic solids, they are challenging to measure. This circumstance led to quite a number of difficulties with respect to the proof of fundamental theories about the properties of magnetic materials.

In a joined project, the researchers involved were able to show that even in complex systems consisting of many different magnetic atoms, magnons can be thermally excited by making use of the recently understood spin Seebeck effect.

These results furthermore show that the spin Seebeck effect can be employed to probe fundamental properties of such systems in a simple way and thus to deduce the complex interplay of the constituents.

Spin waves out of waste heat
The spin Seebeck effect represents a so-called spin-thermoelectric effect, which enables the conversion of thermal energy into electrical energy. Contrary to conventional thermoelectric effects, it also enables the recovery of heat energy in magnetic insulators in combination with a thin metallic layer.

Researchers at Mainz University have recently been able to demonstrate that the origin of the spin Seebeck effect can be understood as thermally excited spin waves within the magnetic solid. These thermal spin waves present a so far unexploited way for the energy recovery of waste heat.

Following this discovery, the researchers started investigations of more complex materials, so called ferrimagnets. In contrast to simple ferromagnetic materials, ferrimagnets possess a non-trivial temperature dependence of the magnetization, resulting of a complex interplay of its different magnetic sublattices.

By making use of temperature dependent spin Seebeck measurements of ferrimagnetic materials, it was possible to deduce characteristic and thus unique signal features. These features can be traced back to the magnonic origin of the effect and therefore allow to gain a new idea of thermal magnons and their distribution.

"Seeing the complicated signal behavior for the first time, I did not think that one could learn so much about the complex and intrinsic interaction within the materials. All this has only been possible due to the excellent collaboration with our national and international colleagues", said Andreas Kehlberger, who just recently finished his PhD in the research group of Professor Mathias Klaui, supported by a stipend of the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) at Johannes Gutenberg University Mainz.

"I am very pleased that this exciting result emerged in a cooperation of a doctoral candidate out of my group at the MAINZ Graduate School of Excellence together with co-workers from Garching within the framework of the Priority Program on Spin Caloric Transport, funded by the German Research Foundation", emphasized Professor Mathias Klaui, Director of the MAINZ Graduate School of Excellence at Johannes Gutenberg University Mainz.

"It shows that complex research is only possible in teams, for instance with funding by the DAAD SpinNet exchange program with Tohoku University."

Graduate School of Excellence "Materials Science in Mainz"

The MAINZ Graduate School of Excellence was approved in the Excellence Initiative of the German federal and state governments in 2007 and received a five-year funding extension in the second round in 2012 - a tremendous boost for the Mainz-based materials scientists and for the sponsorship of young researchers at JGU.

The MAINZ Graduate School consists of work groups at Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Stephan Geprags et al. Origin of the spin Seebeck effect in compensated ferrimagnets - Nature Communications, 4 February 2016 - DOI: 10.1038/ncomms10452


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Johannes Gutenberg Universitaet Mainz
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Clean energy from water
Basel, Switzerland (SPX) Feb 09, 2016
Fuel cells generate electrical energy through a chemical reaction of hydrogen and oxygen. To obtain clean energy, the splitting of water into its components of hydrogen and oxygen is critical. Researchers at the University of Basel study how sunlight can be used for this purpose. The scientific journal Chemical Communications published their latest results. Developing clean and renewable s ... read more


ENERGY TECH
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

ENERGY TECH
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

ENERGY TECH
Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

ENERGY TECH
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

ENERGY TECH
Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

ENERGY TECH
Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

ENERGY TECH
The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

ENERGY TECH
Body temperature triggers newly developed polymer to change shape

Making sense of metallic glass

Twisted X-rays unravel the complexity of helical structures

A deep look into a single molecule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.