. 24/7 Space News .
CARBON WORLDS
Researchers 'iron out' graphene's wrinkles
by Staff Writers
Boston MA (SPX) Apr 04, 2017


Researchers at MIT have found a way to make graphene with fewer wrinkles, and to iron out the wrinkles that do appear. They found each wafer exhibited uniform performance, meaning that electrons flowed freely across each wafer, at similar speeds, even across previously wrinkled regions.

From an electron's point of view, graphene must be a hair-raising thrill ride. For years, scientists have observed that electrons can blitz through graphene at velocities approaching the speed of light, far faster than they can travel through silicon and other semiconducting materials. Graphene, therefore, has been touted as a promising successor to silicon, with the potential to enable faster, more efficient electronic and photonic devices.

But manufacturing pristine graphene - a single, perfectly flat, ultrathin sheet of carbon atoms, precisely aligned and linked together like chickenwire - is extremely difficult. Conventional fabrication processes often generate wrinkles, which can derail an electron's bullet-train journey, significantly limiting graphene's electrical performance.

Now engineers at MIT have found a way to make graphene with fewer wrinkles, and to iron out the wrinkles that do appear. After fabricating and then flattening out the graphene, the researchers tested its electrical conductivity. They found each wafer exhibited uniform performance, meaning that electrons flowed freely across each wafer, at similar speeds, even across previously wrinkled regions.

In a paper published in the Proceedings of the National Academy of Sciences, the researchers report that their techniques successfully produce wafer-scale, "single-domain" graphene - single layers of graphene that are uniform in both atomic arrangement and electronic performance.

"For graphene to play as a main semiconductor material for industry, it has to be single-domain, so that if you make millions of devices on it, the performance of the devices is the same in any location," says Jeehwan Kim, the Class of 1947 Career Development Assistant Professor in the departments of Mechanical Engineering and Materials Science and Engineering at MIT. "Now we can really produce single-domain graphene at wafer scale."

Kim's co-authors include Sanghoon Bae, Samuel Cruz, and Yunjo Kim from MIT, along with researchers from IBM, the University of California at Los Angeles, and Kyungpook National University in South Korea.

A patchwork of wrinkles
The most common way to make graphene involves chemical vapor deposition, or CVD, a process in which carbon atoms are deposited onto a crystalline substrate such as copper foil. Once the copper foil is evenly coated with a single layer of carbon atoms, scientists submerge the entire thing in acid to etch away the copper. What remains is a single sheet of graphene, which researchers then pull out from the acid.

The CVD process can produce relatively large, macroscropic wrinkles in graphene, due to the roughness of the underlying copper itself and the process of pulling the graphene out from the acid. The alignment of carbon atoms is not uniform across the graphene, creating a "polycrystalline" state in which graphene resembles an uneven, patchwork terrain, preventing electrons from flowing at uniform rates.

In 2013, while working at IBM, Kim and his colleagues developed a method to fabricate wafers of single-crystalline graphene, in which the orientation of carbon atoms is exactly the same throughout a wafer.

Rather than using CVD, his team produced single-crystalline graphene from a silicon carbide wafer with an atomically smooth surface, albeit with tiny, step-like wrinkles on the order of several nanometers. They then used a thin sheet of nickel to peel off the topmost graphene from the silicon carbide wafer, in a process called layer-resolved graphene transfer.

Ironing charges
In their new paper, Kim and his colleagues discovered that the layer-resolved graphene transfer irons out the steps and tiny wrinkles in silicon carbide-fabricated graphene. Before transferring the layer of graphene onto a silicon wafer, the team oxidized the silicon, creating a layer of silicon dioxide that naturally exhibits electrostatic charges. When the researchers then deposited the graphene, the silicon dioxide effectively pulled graphene's carbon atoms down onto the wafer, flattening out its steps and wrinkles.

Kim says this ironing method would not work on CVD-fabricated graphene, as the wrinkles generated through CVD are much larger, on the order of several microns.

"The CVD process creates wrinkles that are too high to be ironed out," Kim notes. "For silicon carbide graphene, the wrinkles are just a few nanometers high, short enough to be flattened out."

To test whether the flattened, single-crystalline graphene wafers were single-domain, the researchers fabricated tiny transistors on multiple sites on each wafer, including across previously wrinkled regions.

"We measured electron mobility throughout the wafers, and their performance was comparable," Kim says. "What's more, this mobility in ironed graphene is two times faster. So now we really have single-domain graphene, and its electrical quality is much higher [than graphene-attached silicon carbide]."

Kim says that while there are still challenges to adapting graphene for use in electronics, the group's results give researchers a blueprint for how to reliably manufacture pristine, single-domain, wrinkle-free graphene at wafer scale.

"If you want to make any electronic device using graphene, you need to work with single-domain graphene," Kim says. "There's still a long way to go to make an operational transistor out of graphene. But we can now show the community guidelines for how you can make single-crystalline, single-domain graphene."

Research paper: Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene

CARBON WORLDS
Reusable carbon nanotubes could be the water filter of the future, says RIT study
Rochester NY (SPX) Mar 31, 2017
A new class of carbon nanotubes could be the next-generation clean-up crew for toxic sludge and contaminated water, say researchers at Rochester Institute of Technology. Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials - silicon gels and activated carbon - according to a paper pub ... read more

Related Links
Massachusetts Institute of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
US, Russian Astronauts Prepare for April Crew Swap on Space Station

US astronaut John Glenn is buried with military honors

Curtiss-Wright ships miniature network data system for Orion

Roscosmos hopes to continue cooperation with US

CARBON WORLDS
Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

US Hardware Production Begins for Money-Saving Next-Generation Rockets

US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

'Fuzzy' fibers can take rockets' heat

CARBON WORLDS
Russia critcal to ExoMars Project says Italian Space Agency Head

Chile desert combed for clues to life on Mars

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

CARBON WORLDS
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

CARBON WORLDS
Ukraine Plans to Launch Telecom Satellite in Fourth Quarter of 2017

Russian Satellite Builder Reshetnev Fully Switches to Import Substitution

Russia Offering Brazil to Develop Gonets-Like Satellite System - Manufacturer

Intelsat-OneWeb Merger: Enhanced Connections for Government Users

CARBON WORLDS
Technique makes more efficient, independent holograms

New research could help speed up the 3-D printing process

Norway joins US Strategic Command space data sharing program

Citizen scientist photographs space station space debris from Earth

CARBON WORLDS
Inside Arctic ice lies a frozen rainforest of microorganisms

Exoplanet mission gets ticket to ride

Astronomers confirm atmosphere around the super-Earth

Atmosphere around super-earth detected

CARBON WORLDS
Hubble takes close-up portrait of Jupiter

Neptune's movement from the inner to the outer solar system was smooth and calm

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.