. 24/7 Space News .
TECH SPACE
Researchers improve performance of cathode material by controlling oxygen activity
by Staff Writers
San Diego CA (SPX) Jul 11, 2016


This is a SEM image of lithium-rich cathode particles treated with a carbon dioxide-based gas mixture to introduce oxygen vacancies on the surface. Image courtesy Laboratory for Energy Storage and Conversion, UC San Diego. For a larger version of this image please go here.

An international team of researchers has demonstrated a new way to increase the robustness and energy storage capability of a particular class of "lithium-rich" cathode materials - by using a carbon dioxide-based gas mixture to create oxygen vacancies at the material's surface. Researchers said the treatment improved the energy density - the amount of energy stored per unit mass - of the cathode material by up to 30 to 40 percent.

The discovery sheds light on how changing the oxygen composition of lithium-rich cathode materials could improve battery performance, particularly in high-energy applications such as electric vehicles. The findings were published July 1 in Nature Communications.

"We've uncovered a new mechanism at play in this class of lithium-rich cathode materials. With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity," said Shirley Meng, nanoengineering professor at the University of California San Diego and one of the principal investigators of the study.

Meng leads the Laboratory for Energy Storage and Conversion and is the director of the Sustainable Power and Energy Center, both at UC San Diego. A hallmark of her group's research efforts is understanding the science behind battery materials - at the level of single atoms and molecules, and at the interfaces.

Her group is one of the first to focus on the activity of oxygen atoms in battery materials. Typically, the focus has centered on lithium and transition metal atoms. "Now we're showing that oxygen also plays a significant role in battery performance," Meng said.

In the new study, Meng's group collaborated with researchers from the Chinese Academy of Sciences to develop a way to introduce oxygen vacancies in a class of cathode materials known as lithium-rich layered oxides.

These materials have been gaining popularity among battery researchers because they can potentially house more energy than other cathode materials. But lithium-rich cathode materials also have their drawbacks, including slow discharge rates and an issue called voltage fade, which is characterized by a drop in cell voltage with each charge-discharge cycle.

"We're presenting a new way to mitigate the issues plaguing lithium-rich cathode materials - through understanding and controlling how oxygen behaves in these materials," Meng said.

The team found that treating the lithium-rich cathode particles with a carbon dioxide-based gas mixture created oxygen vacancies uniformly throughout the surface of the particles. The treatment only left oxygen vacancies within the first 10 to 20 nanometers without altering the rest of the material's atomic structure.

"This is a mild treatment that allows us to make controlled changes in the material exactly where we want - near the interface," said Minghao Zhang, co-first author of the paper and a PhD student at the Jacobs School of Engineering at UC San Diego working in Meng's group.

In electrochemical tests, the treated material exhibited a relatively high discharge capacity (300 milliamp-hours per gram) with minimal voltage loss after 100 charge-discharge cycles.

"This is a significant improvement with regards to the voltage fade problem, but there's still a lot of work left to completely resolve this problem," Meng said.

Through characterization studies in collaboration with groups from Brookhaven National Laboratory and Oak Ridge National Laboratory, researchers provided several reasons why oxygen vacancies improved the cathode material's performance. They explained that the vacancies allow lithium ions to move around more easily throughout the cathode, leading to high discharge capacity and faster discharge rates.

The vacancies also increase the material's stability by inhibiting the formation of highly reactive oxygen radicals at the cathode material's surface, which are typically responsible for degrading the electrolyte while the battery is operating. This could mean longer battery lifetime, researchers said.

"We can controllably utilize oxygen activity to improve the performance of the material and better control how it works inside the battery," Zhang said.

As a next step, researchers will work on scaling up the treatment reported in this study. They will also conduct further studies on the oxygen activity in other materials and how it could be leveraged to improve battery performance.

"But before we can decide if this is a promising step forward for batteries, we need to probe whether our technology can improve battery performance based on multiple metrics at once, not just whether it improves a single parameter," Meng said. "We need to think of improving battery performance like we're expanding on a spiderweb with multiple variables."

"Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries." Authors of the study are Minghao Zhang,* Danna Qian, Haodong Liu, Sunny Hy and Ying Shirley Meng of UC San Diego; Bao Qiu,* Yonggao Xia and Zhaoping Liu of the Chinese Academy of Sciences, Zhejiang, China; Lijun Wu* and Yimei Zhu of Brookhaven National Laboratory; Jun Wang of University of Muenster; and Yan Chen and Ke An of Oak Ridge National Laboratory. The work performed in the United States was supported by grants from the Department of Energy.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - San Diego
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
WSU researchers develop shape-changing 'smart' material
Pullman WA (SPX) Jul 03, 2016
Washington State University researchers have developed a unique, multifunctional smart material that can change shape from heat or light and assemble and disassemble itself. They have filed a provisional patent on the work. This is the first time researchers have been able to combine several smart abilities, including shape memory behavior, light-activated movement and self-healing behavio ... read more


TECH SPACE
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

TECH SPACE
Unusual form of sand dune discovered on Mars

Mars Rover's Sand-Dune Studies Yield Surprise

ChemCam findings hint at oxygen-rich past on Mars

Curiosity rover analysis suggests Mars has oxygen-rich history

TECH SPACE
Mathematical framework prioritizes key patterns to accelerate scientific discovery

Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

TECH SPACE
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

TECH SPACE
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

TECH SPACE
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

TECH SPACE
Teenagers at Keele University Discover Possible New Exoplanet

What Happens When You Steam a Planet

How Planetary Age Reveals Water Content

When it comes to brown dwarfs, 'how far?' is a key question

TECH SPACE
A little impurity makes nanolasers shine

A drop of water as a model for the interplay of adhesion and stiction

Triple external quantum efficiencies - a new material TADF was developed

Researchers report record performance for bismuth-based Zintl material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.