Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Researchers find way to tune thermal conductivity of 2-D materials
by Staff Writers
Raleigh NC (SPX) Oct 27, 2016


The researchers found that, by introducing disorder to the MoS2, they could significantly alter the thermal anisotropy ratio.

Researchers have found an unexpected way to control the thermal conductivity of two-dimensional (2-D) materials, which will allow electronics designers to dissipate heat in electronic devices that use these materials.

2-D materials have a layered structure, with each layer having strong bonds horizontally, or "in plane," and weak bonds between the layers, or "out of plane." These materials have unique electronic and chemical properties, and hold promise for use in creating flexible, thin, lightweight electronic devices.

For many of these potential applications, it's important to be able to dissipate heat efficiently. And this can be tricky. In 2-D materials, heat is conducted differently in plane than it is out of plane.

For example, in one class of 2-D materials, called TMDs, heat is conducted at 100 watts per meter per Kelvin (W/mK) in plane, but at only 2 W/mK out of plane. That gives it a "thermal anisotropy ratio" of about 50.

To better understand the thermal conduction properties of 2-D materials, a team of researchers from North Carolina State University, the University of Illinois at Urbana-Champaign (UI) and the Toyota Research Institute of North America (TRINA) began experimenting with molybdenum disulfide (MoS2), which is a TMD.

The researchers found that, by introducing disorder to the MoS2, they could significantly alter the thermal anisotropy ratio.

The researchers created this disorder by introducing lithium ions between the layers of MoS2. The presence of the lithium ions does two things simultaneously: it puts the layers of the 2-D material out of alignment with each other, and it forces the MoS2 to rearrange the structure of its component atoms.

When the ratio of lithium ions to MoS2 reached 0.34, the in-plane thermal conductivity was 45 W/mK, and the out-of-plane thermal conductivity dropped to 0.4 W/mK- increasing the material's thermal anisotropy ratio from 50 to more than 100. In other words, heat became more than twice as likely to travel in plane - along the layer, rather than between the layers.

And that was as good as it got. Adding fewer lithium ions made the thermal anisotropy ratio lower. Adding more ions also made it lower. But in both cases, the ratio was affected in a predictable way, meaning that the researchers could tune the material's thermal conductivity and thermal anisotropy ratio.

"This finding was very counter-intuitive," says Jun Liu, an assistant professor of mechanical and aerospace engineering at NC State and co-corresponding author of a paper describing the work. "The conventional wisdom has been that introducing disorder to any material would decrease the thermal anisotropy ratio.

"But based on our observations, we feel that this approach to controlling thermal conductivity would apply not only to other TMDs, but to 2-D materials more broadly," Liu says.

"We set out to advance our fundamental understanding of 2-D materials, and we have," Liu adds. "But we also learned something that is likely to be of practical use for the development of technologies that make use of 2-D materials."

The paper, "Tuning Thermal Conductivity in Molybdenum Disulfide by Electrochemical Intercalation," will be published in the journal Nature Communications Oct. 21. Co-corresponding authors of the paper are Gaohua Zhu of TRINA and David Cahill of UI. Co-authors are Ruigang Zhang and Debasish Banerjee of TRINA, and Qiye Zheng and Dongyao Li of UI. The work was supported by TRINA.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Chemists design organic molecules that glow persistently at room temperature
Washington DC (SPX) Oct 31, 2016
LEDs have inspired a new generation of electronics, but there is still work ahead if we want luminescent materials to consume less energy and have longer lifespans. Certain inorganic metals seem promising, but they are rare, expensive to process, and potentially toxic. In Chem on October 13, researchers in China present an alternative: a group of metal-free phosphorescent molecules that ef ... read more


TECH SPACE
NASA Shakes Up Orion Test Article for the Journey to Mars

Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

TECH SPACE
Boosting Europe's all-electric satellites

Guiding Supply Ship to the International Space Station

The Pressure is On for SLS Hardware in Upcoming Test

First launch for Orbital's Antares rocket since '14 blast

TECH SPACE
Did it crash or land? Search on for Europe's Mars craft

Rover Conducting Science Investigations at 'Spirit Mount'

MAVEN mission observes ups and downs of water escape from Mars

A graveyard of broken dreams and landers

TECH SPACE
China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

TECH SPACE
Airbus DS contracts with Intelsat General for European Defence Communications

Final exams prepare Thomas Pesquet for launch

Airbus DS in partnership with Orbital ATK to build EUTELSAT 5 West B

Third party satellite launch order bookings for Isro stands at $42 million

TECH SPACE
Pushing the boundaries of magnet design

The smart wheelchair

Using Photonics to Call Home

Researchers find way to tune thermal conductivity of 2-D materials

TECH SPACE
Oldest known planet-forming disk found

ALMA spots possible formation site of icy giant planet

Astronomers find oldest known planetary disk

Proxima Centauri might be more sunlike than we thought

TECH SPACE
Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

Curious tilt of the Sun traced to undiscovered planet

Shedding light on Pluto's glaciers




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement