. 24/7 Space News .
NANO TECH
Researchers find simpler way to deposit magnetic iron oxide onto gold nanorods
by Staff Writers
Raleigh NC (SPX) Dec 27, 2017


Mixing silica-overcoated gold nanorods (left) and iron oxide nanoparticles (center) yields iron oxide-overcoated gold nanorods (right).

Researchers from North Carolina State University and MIT have found a simpler way to deposit magnetic iron oxide (magnetite) nanoparticles onto silica-coated gold nanorods, creating multifunctional nanoparticles with useful magnetic and optical properties.

Gold nanorods have widespread potential applications because they have a surface plasmon resonance - meaning they can absorb and scatter light. And by controlling the dimensions of the nanorods, specifically their aspect ratio (or length divided by diameter), the wavelength of the absorbed light can be controlled.

This characteristic makes gold nanorods attractive for use in catalysis, security materials and a host of biomedical applications, such as diagnostics, imaging, and cancer therapy. The fact that the magnetite-gold nanoparticles can also be manipulated using a magnetic field enhances their potential usefulness for biomedical applications, such as diagnostic tools or photothermal therapeutics.

"The approach we outline in our new paper is simple, likely making it faster and less expensive than current techniques for creating these nanoparticles - on a small scale or a large one," says Joe Tracy, an associate professor of materials science and engineering at NC State and corresponding author of a paper on the work.

The new technique uses an approach called heteroaggregation. Silica-coated gold nanorods are dispersed in ethanol, a polar solvent. In ethanol, the hydrogen atoms are partially positively charged, and the oxygen atoms are partially negatively charged.

The magnetite nanoparticles are dispersed in hexanes, a non-polar solvent, where the charges are not separated. When the two solutions are mixed, the magnetite nanoparticles bind to the gold nanorods - and the resulting magnetite-gold nanoparticles are removed from the solvent using a simple centrifugation process.

"We are able to take pre-synthesized, silica-coated gold nanorods and iron oxide nanoparticles and then combine them," says Brian Chapman, a Ph.D. student at NC State and lead author of the paper.

"This is simpler than other techniques, which rely on either growing iron oxide nanoparticles on gold nanorods or using molecular cross-linkers to bind the iron to the silica coating of the nanorods."

"Our approach also results in highly uniform nanoparticles," Tracy says. "And by incorporating ligands called PEG-catechols, the resulting nanoparticles can be dispersed in water. This makes them more useful for biomedical applications.

"These are interesting, and potentially very useful, multifunctional nanoparticles," Tracy adds. "And hopefully this work will facilitate the development of applications that capitalize on them."

The paper, "Heteroaggregation Approach for Depositing Magnetite Nanoparticles onto Silica-Overcoated Gold Nanorods," is published in the journal Chemistry of Materials. The paper was co-authored by Wei-Chen Wu, a former Ph.D. student at NC State; and Qiaochu Li and Niels Holten-Andersen of MIT. The work was done with support from the National Science Foundation under grants DMR-1121107, DMR-1056653, and CBET-1605699.

NANO TECH
A 100-fold leap to GigaDalton DNA nanotech
Boston MA (SPX) Dec 14, 2017
DNA, present in almost every cell, is increasingly being used as a building material to construct tiny, but sophisticated structures such as autonomous 'DNA walkers' that can move along a microparticle surface, fluorescent labels for diagnostic applications, 'DNA boxes' that serve as smart drug-delivery vehicles programmed to open up at disease sites to release their therapeutic content, or prog ... read more

Related Links
North Carolina State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Soyuz carrying Expedition 53 crew lands in Kazakhstan

The Moon Shines Brightly Among NASA's 2017 Highlights

SpaceX resupply truck Dragon on route to ISS for space research delivery

'Dragon back' as cargo reaches space station

NANO TECH
ArianeGroup to start production of the first Ariane 62

RS-25 Engine Test is Giant Step for 3-D Printing

ArianeGroup signs contract with ESA for future Prometheus engine

In first, SpaceX launches recycled rocket and spaceship

NANO TECH
Planting oxygen ensures a breath of fresh air

Opportunity Comes to a Fork in the Road

Designing future human space exploration on Hawaii's lava fields

Space program should focus on Mars, says editor of New Space

NANO TECH
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

NANO TECH
Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

NANO TECH
Computer systems predict objects' responses to physical forces

3-D printed metals can be both strong and ductile

Rainbow spider's iridescence could inspire color technology advances

Experiments reveal evidence of exotic new matter state

NANO TECH
Spanning disciplines in the search for life beyond Earth

NASA uses AI to uncover eighth planet circling distant star

No alien 'signals' from cigar-shaped asteroid: researchers

Life's building blocks observed in spacelike environment

NANO TECH
New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

Wrapping up 2017 one year out from MU69









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.