Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Researchers discover missing link in the evolution of complex cells
by Staff Writers
Uppsala, Sweden (SPX) May 11, 2015


Image of a hydrothermal vent field along the Arctic Mid-Ocean Ridge, close to where 'Loki' was found in marine sediments. The hydrothermal vent system was discovered by researchers from the Centre for Geobiology at University of Bergen (Norway). Image courtesy Centre for Geobiology (University of Bergen, Norway) by R.B. Pedersen.

In a new study, published in Nature this week, a research team led from Uppsala University in Sweden presents the discovery of a new microbe that represents a missing link in the evolution of complex life. The study provides a new understanding of how, billions of years ago, the complex cell types that comprise plants, fungi, but also animals and humans, evolved from simple microbes.

Cells are the basic building blocks of all life on our planet. Yet, whereas the cells of bacteria and other microbes are small and simple, all visible life, including us humans, is generally made up of large and complex cell types. The origin of these complex cell types has long been a mystery to the scientific community, but now researchers from Uppsala University in Sweden have discovered a new group of microorganisms that represents a missing link in the evolutionary transition from simple to complex cells.

In the 1970s, the acclaimed biologist Carl Woese discovered a completely new group of microorganisms, the Archaea, and showed that these represented a separate branch in the Tree of Life - a finding that stunned the scientific community at the time. Despite that archaeal cells were simple and small like bacteria, researchers found that Archaea were more closely related to organisms with complex cell types, a group collectively known as 'eukaryotes'. This observation has puzzled scientists for decades: How could the complex cell types from eukaryotes have emerged from the simple cells of Archaea?

In this weeks' edition of Nature, researchers from Uppsala University in Sweden, along with collaborators from the universities in Bergen (Norway) and Vienna (Austria) report the discovery of a new group of Archaea, the Lokiarchaeota (or 'Loki' for short), and identify it to be a missing link in the origin of eukaryotes.

"The puzzle of the origin of the eukaryotic cell is extremely complicated, as many pieces are still missing. We hoped that Loki would reveal a few more pieces of the puzzle, but when we obtained the first results, we couldn't believe our eyes. The data simply looked spectacular", says Thijs Ettema at the Department of Cell and Molecular Biology, Uppsala University, who lead the scientific team that carried out the study.

"By studying its genome, we found that Loki represents an intermediate form in-between the simple cells of microbes, and the complex cell types of eukaryotes", says Thijs Ettema.

When Loki was placed in the Tree of Life, this idea was confirmed.

"Loki formed a well-supported group with the eukaryotes in our analyses", says Lionel Guy, one of the senior scientists involved in the study from Uppsala University.

"In addition, we found that Loki shares many genes uniquely with eukaryotes, suggesting that cellular complexity emerged in an early stage in the evolution of eukaryotes", says Anja Spang, researcher at Department of Cell and Molecular Biology , Uppsala University, and one of the lead-authors of the study.

The name Lokiarchaeota is derived from the hostile environment close to where it was found, Loki's Castle, a hydrothermal vent system located on the Mid-Atlantic Ridge between Greenland and Norway at a depth of 2,352 meters.

"Hydrothermal vents are volcanic systems located at the ocean floor. The site where Loki is heavily influenced by volcanic activity, but actually quite low in temperature", says Steffen Jorgensen from the University of Bergen in Norway, who was involved in taking the samples where Loki was found.

"Extreme environments generally contain a lot of unknown microorganisms, which we refer to as microbial dark matter", says Jimmy Saw, researcher at Department of Cell and Molecular Biology, Uppsala University, and co-lead author of the paper.

By exploring microbial dark matter with new genomics techniques, Thijs Ettema and his team hope to find more clues about how complex cells evolved.

"In a way, we are just getting started. There is still a lot out there to discover, and I am convinced that we will be forced to revise our biology textbooks more often in the near future", says Thijs Ettema.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Uppsala University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Ancient connection between the Americas enhanced extreme biodiversity
Washington DC (SPX) May 01, 2015
Species exchange between North and South America created one of the most biologically diverse regions on Earth. A new study by Smithsonian scientists and colleagues published this week in the Proceedings of the National Academy of Sciences shows that species migrations across the Isthmus of Panama began about 20 million years ago, some six times earlier than commonly assumed. These biological re ... read more


EARLY EARTH
Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

EARLY EARTH
Traffic Around Mars Gets Busy

Rock Spire in 'Spirit of St. Louis Crater' on Mars

Rover on the Lookout for Dust Devils

UAE opens space center to oversee mission to Mars

EARLY EARTH
The language of invention: Most innovations are rephrasings of the past

NASA Confirms Electromagnetic Drive Produces Thrust in Vacuum

NASA pushes back against proposal to slash climate budget

Hawaii Says 'Aloha' to NASA's Low-Density Supersonic Decelerator

EARLY EARTH
Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

EARLY EARTH
Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

Liquid crystal bubbles experiment arrives at International Space Station

EARLY EARTH
ILS And Dauria announce Proton/Angara dual launch services agreement

SpaceX to test 'eject-button' for astronauts

India to launch 6 more satellites in 2015-16

Arianespace to launch HellaSat-4/SGS-1 for Arabsat and KACST

EARLY EARTH
New exoplanet too big for its star

Robotically discovering Earth's nearest neighbors

Astronomers join forces to speed discovery of habitable worlds

Titan's Atmosphere Useful In Study Of Hazy Exoplanets

EARLY EARTH
Real stereotypes continue to exist in virtual worlds

Researchers match physical and virtual atomic friction experiments

See flower cells in 3-D - no electron microscopy required

Northwestern scientists develop first liquid nanolaser




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.