. 24/7 Space News .
TECH SPACE
A new method of trapping multiple particles using fluidics
by Staff Writers
Champaign IL (SPX) Mar 29, 2016


Using the Stokes Trap, the researchers can manipulate particles to follow any predetermined path. Image courtesy of Anish Shenoy. For a larger version of this image please go here.

Precise control of an individual particle or molecule is a difficult task. Controlling multiple particles simultaneously is an even more challenging endeavor. Researchers at the University of Illinois have developed a new method that relies on fluid flow to manipulate and assemble multiple particles. This new technique can trap a range of submicron- to micron-sized particles, including single DNA molecules, vesicles, drops or cells.

"This is a fundamentally new method for trapping multiple particles in solution," said Charles M. Schroeder, a U. of I. professor of chemical and biomolecular engineering. Schroeder conducted the research with mechanical science and engineering graduate student Anish Shenoy and chemical and biomolecular engineering professor Christopher Rao.

The study results were reported in the Proceedings of the National Academy of Sciences.

Many methods exist for particle trapping, with each type using a different modality for trapping - including optical, magnetic, acoustic and electrical forces. However, many of these techniques change or perturb the system that is being observed.

"The existing techniques can be very restrictive in particle properties required for trapping, and we wanted to study a broad range of systems like bacterial cells and different types of soft particles like vesicles, bubbles and droplets," Shenoy said. None of the prevailing techniques can be used for studying this broad range of systems across multiple length scales, he said. Thus, the researchers wanted to build a technique that could be generally applied to arbitrary numbers of arbitrary kinds of particles.

Called the Stokes Trap, the method developed by Schroeder's team relies on gentle fluid flow to manipulate particles. Schroeder's group is the first to implement multiple particle trapping and assembly using fluid flow.

In order to control the movement of the particles from a set starting position to a set ending position, Shenoy and his colleagues developed an automated control algorithm that calculates which pressures are required to drive the flow fields and precisely move the particles in a small microdevice. The algorithm can solve the complex optimization problem in half a millisecond, he said.

"There are multiple parameters involved in the controller, and that's the complicated part of it," Schroeder said.

The control program is designed to calculate the particles' distance from a target position and move them efficiently by minimizing the flow rate necessary to move the particles. It also will allow researchers to assemble multiple particles into arbitrary, complex structures and to probe interactions between two or more particles.

The group hopes the Stokes Trap will become as universal as other commonly used trapping methods.

"This is not only another method in the toolbox but it also has several advantages over other methods," Schroeder said. "As long as you can see a particle and detect it in some way, you can trap it."

Research paper: "Stokes trap for multiplexed particle manipulation and assembly using fluidics"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Urbana-Champaign
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Tunable windows for privacy, camouflage
Boston MA (SPX) Mar 21, 2016
Say goodbye to blinds. Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a technique that can quickly change the opacity of a window, turning it cloudy, clear or somewhere in between with the flick of a switch. Tunable windows aren't new but most previous technologies have relied on electrochemical reactions achieved through expensive manu ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
New Gravity Map Gives Best View Yet Inside Mars

ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

TECH SPACE
British bacon sandwich en route to ISS tastes out of this world

China regulator frowns on Anbang's hotel bids: report

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

TECH SPACE
China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

TECH SPACE
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

TECH SPACE
MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

TECH SPACE
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

TECH SPACE
A new model for how twisted bundles take shape

Local fingerprint of hydrogen bonding captured in experiments

Lehigh scientists extend the reach of single crystals

A new-structure magnetic memory device developed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.