Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















CHIP TECH
Researchers develop hack-proof RFID chips
by Staff Writers
Boston MA (SPX) Feb 04, 2016


Researchers have designed an RFID chip that prevents so-called side-channel attacks, which analyze patterns of memory access or fluctuations in power usage when a device is performing a cryptographic operation, in order to extract its cryptographic key. Pictured here is a standard RFID chip.

Researchers at MIT and Texas Instruments have developed a new type of radio frequency identification (RFID) chip that is virtually impossible to hack. If such chips were widely adopted, it could mean that an identity thief couldn't steal your credit card number or key card information by sitting next to you at a cafe, and high-tech burglars couldn't swipe expensive goods from a warehouse and replace them with dummy tags.

Texas Instruments has built several prototypes of the new chip, to the researchers' specifications, and in experiments the chips have behaved as expected. The researchers presented their research this week at the International Solid-State Circuits Conference, in San Francisco.

According to Chiraag Juvekar, a graduate student in electrical engineering at MIT and first author on the new paper, the chip is designed to prevent so-called side-channel attacks. Side-channel attacks analyze patterns of memory access or fluctuations in power usage when a device is performing a cryptographic operation, in order to extract its cryptographic key.

"The idea in a side-channel attack is that a given execution of the cryptographic algorithm only leaks a slight amount of information," Juvekar says. "So you need to execute the cryptographic algorithm with the same secret many, many times to get enough leakage to extract a complete secret."

One way to thwart side-channel attacks is to regularly change secret keys. In that case, the RFID chip would run a random-number generator that would spit out a new secret key after each transaction. A central server would run the same generator, and every time an RFID scanner queried the tag, it would relay the results to the server, to see if the current key was valid.

Blackout
Such a system would still, however, be vulnerable to a "power glitch" attack, in which the RFID chip's power would be repeatedly cut right before it changed its secret key. An attacker could then run the same side-channel attack thousands of times, with the same key. Power-glitch attacks have been used to circumvent limits on the number of incorrect password entries in password-protected devices, but RFID tags are particularly vulnerable to them, since they're charged by tag readers and have no onboard power supplies.

Two design innovations allow the MIT researchers' chip to thwart power-glitch attacks: One is an on-chip power supply whose connection to the chip circuitry would be virtually impossible to cut, and the other is a set of "nonvolatile" memory cells that can store whatever data the chip is working on when it begins to lose power.

For both of these features, the researchers - Juvekar; Anantha Chandrakasan, who is Juvekar's advisor and the Vannevar Bush Professor of Electrical Engineering and Computer Science; Hyung-Min Lee, who was a postdoc in Chandrakasan's group when the work was done and is now at IBM; and TI's Joyce Kwong, who did her master's degree and PhD with Chandrakasan - use a special type of material known as a ferroelectric crystals.

As a crystal, a ferroelectric material consists of molecules arranged into a regular three-dimensional lattice. In every cell of the lattice, positive and negative charges naturally separate, producing electrical polarization. The application of an electric field, however, can align the cells' polarization in either of two directions, which can represent the two possible values of a bit of information.

When the electric field is removed, the cells maintain their polarization. Texas Instruments and other chip manufacturers have been using ferroelectric materials to produce nonvolatile memory, or computer memory that retains data when it's powered off.

Complementary capacitors
A ferroelectric crystal can also be thought of as a capacitor, an electrical component that separates charges and is characterized by the voltage between its negative and positive poles. Texas Instruments' manufacturing process can produce ferroelectric cells with either of two voltages: 1.5 volts or 3.3 volts.

The researchers' new chip uses a bank of 3.3-volt capacitors as an on-chip energy source. But it also features 571 1.5-volt cells that are discretely integrated into the chip's circuitry. When the chip's power source - the external scanner - is removed, the chip taps the 3.3-volt capacitors and completes as many operations as it can, then stores the data it's working on in the 1.5-volt cells.

When power returns, before doing anything else the chip recharges the 3.3-volt capacitors, so that if it's interrupted again, it will have enough power to store data. Then it resumes its previous computation. If that computation was an update of the secret key, it will complete the update before responding to a query from the scanner. Power-glitch attacks won't work.

Because the chip has to charge capacitors and complete computations every time it powers on, it's somewhat slower than conventional RFID chips. But in tests, the researchers found that they could get readouts from their chips at a rate of 30 per second, which should be more than fast enough for most RFID applications.

.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Scientists build a neural network using plastic memristors
Moscow, Russia (SPX) Jan 29, 2016
Scientists from the Kurchatov Institute, MIPT, the University of Parma (Italy), Moscow State University, and Saint Petersburg State University have created a neural network based on polymeric memristors - devices that can potentially be used to build fundamentally new computers. According to the researchers, these developments will primarily help in creating systems for machine vision, hearing, ... read more


CHIP TECH
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

CHIP TECH
Mars Rover Opportunity Busy Through Depth of Winter

India to Cooperate With France on Next Mission to Mars

Opportunity rock abrasion tool conducts two rock grinds

Curiosity gets a good taste of scooped, sieved sand

CHIP TECH
Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

CHIP TECH
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

CHIP TECH
Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

CHIP TECH
70th consecutive successful launch for Ariane 5

AMOS-6 Scheduled for May 2016 Launch by Space-X

SpaceX Tests Crew Dragon Parachutes

Arianespace's year-opening Ariane 5 mission is approved for launch

CHIP TECH
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

CHIP TECH
Energy harvesting via smart materials

Imaged 'jets' reveal cerium's post-shock inner strength

ChemChina 'eyeing Syngenta' in biggest ever Chinese takeover

Controlling the magnetic properties of individual iron atom




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.