. 24/7 Space News .
INTERNET SPACE
Researchers demonstrate spin effects in solution-based nanocrystals
by Staff Writers
Hamburg, Germany (SPX) Jun 15, 2017


Circular photo-galvanic effect in lead sulfide nanosheet devices. (Nature)

Wet-chemically produced nanocrystals are becoming more and more powerful. They are already used in the background lighting of the latest generation of flat panel displays. In the future they will be used increasingly as active elements, which produce higher color brilliance.

They are also used in other fields of application, e.g., for medical diagnosis and treatment. Now a research group around Dr. Christian Klinke from the University of Hamburg has succeeded in substantiating electronic spin effects in such nanoplatelets. In this way, more cost-effective and more powerful transistors and computer chips with lower power consumption are conceivable in the future. The two-dimensional materials are also advantageous since they can be produced inexpensively and on a large scale in a chemical laboratory and are nevertheless of the highest quality, as shown now.

The group around Dr. Christian Klinke focuses on the synthesis and characterization of two-dimensional semiconductor nanocrystals. The nanoplatelets are adjustable in their structure, but also in their optical and electrical properties (by quantum mechanical effects). This makes them interesting for application in solar cells and computer circuits.

In contrast to classical devices which work based on the electron motion, spintronic components function based on the spin orientation of electrons. When light passes through special optical elements, it can become circularly polarized, i. e. the light receives a torque.

By the illumination with circular-polarized light, it is possible to align electrical charges with respect to their spin (torque) in semiconductor materials and to convert them into an electrical current without applying a voltage. Investigations on the generated current provide information about spin-dependent properties of the crystal.

The researchers have now succeeded in demonstrating this so-called Rashba effect in two-dimensional lead sulfide nanoplatelets. It is particularly interesting since this effect is normally not observed due to the high crystal symmetry of the nanoplatelets. Only by the influence of an effective electric field the symmetry is broken and a current can be measured.

By varying the layer thickness of the nanoplatelets, the character of the light used, and the intensity of the electric fields, the effect could be controlled. This allows the conditions to be adapted specifically to the targeted applications, which enables the external manipulation of the electron spin. The experimental observations were supported with simulations of the electronic structure of the materials by the group of Prof. Carmen Herrmann at the University of Hamburg.

"The findings are particularly valuable as it was demonstrated for the first time that basic effects of electric spin transport are also possible in wet-chemically generated nanomaterials," says Christian Klinke. "This raises hope that also other interesting phenomena can be observed in these materials, which will contribute to improving our understanding of their properties."

These new insights, which are described in detail in the journal Nature Communications, make a decisive contribution to our knowledge on opto-electronic properties of tailor-made nanostructures. They serve as a foundation for the further investigation of useful two-dimensional systems and their application in the field of regenerative energies, information technology, and catalysis.

Nanotechnology is a key technology of the 21st century. Materials with a size of only a few nanometers (one millionth of a millimeter) have particular optical, magnetic, electrical and photoelectric properties. They can be used in efficient light-emitting diodes, solar cells, novel sensors, photodetectors, flexible transistors, and efficient computer chips as well as in biological and medical fields. The understanding of the opto-electrical properties of nanostructures and their precise control allows the use in semiconductor electronics at the interface to optical and electromagnetic systems, which can lead to novel high-performance and energy-saving processors.

Research paper

INTERNET SPACE
Queen's researcher's 'miracle material' discovery could end cracked smart devices
Belfast UK (SPX) Jun 05, 2017
Currently, most parts of a smart phone are made of silicon and other compounds, which are expensive and break easily, but with almost 1.5 billion smart phones purchased worldwide last year, manufacturers are on the lookout for something more durable and less costly. Dr Elton Santos from Queen's University's School of Mathematics and Physics, has been working with a team of top-notch scient ... read more

Related Links
University of Hamburg
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

Will Space Exploration lead us to a Global Space Agency

John Glenn Cygnus departs ISS begins secondary mission

INTERNET SPACE
Proton returns to flight with US satellite after 12 month hiatus

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

SpaceX's first recycled Dragon arrives at space station

INTERNET SPACE
Study estimates amount of water needed to carve Martian valleys

Curiosity Peels Back Layers on Ancient Martian Lake

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

Student-Made Mars Rover Concepts Lift Off

INTERNET SPACE
Seeds of 5,000-year-old tree bud after returning from space

Reusable craft are in CASIC's plans

China discloses Chang'e 5 lunar probe landing site

China to provide more opportunities to private space companies

INTERNET SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

INTERNET SPACE
Metal-ion catalysts and hydrogen peroxide could green up plastics production

Liquids are capable of supporting waves with short wavelengths only

New sound diffuser is 10 times thinner than existing designs

New catalytic converter composite reduces rare earth element usage

INTERNET SPACE
Flares May Threaten Planet Habitability Near Red Dwarfs

Hubble's tale of 2 exoplanets - Nature vs nurture

Discovery reveals planet almost as hot as the Sun

Astronomers discover alien world hotter than most stars

INTERNET SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.