Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Researchers Use NASA and Other Data to Look Into the Heart of a Solar Storm
by Staff Writers
Greenbelt MD (SPX) Sep 01, 2014


Twelve spacecraft in Earth's magnetosphere - in addition to other missions -- helped scientists better observe and understand an unusual January 2005 solar storm. The four Cluster spacecraft were in the solar wind, directly upstream of Earth. Picture not to scale. Image courtesy ESA.

A space weather storm from the sun engulfed our planet on Jan. 21, 2005. The event got its start on Jan. 20, when a cloud of solar material, a coronal mass ejection or CME, burst off the sun and headed toward Earth. When it arrived at our planet, the ring current and radiation belts surrounding Earth swelled with extra particles, while the aurora persisted for six hours.

Both of these are usually signs of a very large storm - indeed, this was one of the largest outpouring of solar protons ever monitored from the sun. But the storm barely affected the magnetic fields around Earth - disturbances in these fields can affect power grids on the ground, a potential space weather effect keenly watched for by a society so dependent on electricity.

Janet Kozyra, a space scientist at the University of Michigan in Ann Arbor, thought this intriguing combination of a simultaneously weak and strong solar storm deserved further scrutiny. In an effort to better understand -- and some day forecast -- such storms and their potential effects on human technology, an unusual event like this can help researchers understand just what aspects of a CME lead to what effects near Earth.

"There were features appearing that we generally only see during extreme space weather events, when by other measures the storm was moderate," said Kozyra. "We wanted to look at it holistically, much like terrestrial weather researchers do with extreme weather. We took every single piece of data that we could find on the solar storm and put it together to see what was going on."

With observations collected from ground-based networks and 20 different satellites, Kozyra and a group of colleagues, each an expert in different aspects of the data or models, found that the CME contained a rare piece of dense solar filament material.

This filament coupled with an unusually fast speed led to the large amount of solar material observed. A fortuitous magnetic geometry, however, softened the blow, leading to reduced magnetic effects. These results were published in the Aug. 14, 2014, issue of Journal of Geophysical Research, Space Physics.

The researchers gathered data from spacecraft orbiting in Earth's ionosphere, which extends up to 600 miles above the planet's surface, and satellites above that, orbiting through the heart of Earth's magnetic environment, the magnetosphere.

The massive amount of data was then incorporated into a variety of models developed at the University of Michigan's Center for Space Environment Modeling, which are housed at the Community Coordinated Modeling Center at NASA's Goddard Space Flight Center in Greenbelt, Maryland, a facility dedicated to providing comprehensive access to space weather models.

With the models in hand, the team could put together the story of this particular solar storm. It began with the CME on Jan. 20, 2005. The European Space Agency and NASA's Solar and Heliospheric Observatory, or SOHO, captured images of the CME.

At their simplest, CMEs look like a magnetic bubble with material around the outside. In this case, there was an additional line of colder, denser solar material - an electrically charged gas called plasma - inside called a solar filament.

Solar filaments are ribbons of dense plasma supported in the sun's outer atmosphere - the corona -- by strong magnetic fields. Filament material is 100 times denser and 100 times cooler than the surrounding atmosphere. When the supporting magnetic fields erupt, the filaments are caught up in the explosive release that forms the CME.

Despite observations that the majority of eruptions like this involve solar filaments, the filaments are rarely identified in disturbances that reach Earth. Why this might be, is a mystery - but it means that the presence of the solar filament in this particular event is a rare sighting.

Subsequent observations of the CME showed it to be particularly fast, with a velocity that peaked at around 1800 miles per second before slowing to 600 miles per second as it approached Earth. Just how many CMEs have filaments or how the geometry of such filaments change as they move toward Earth is not precisely known.

In this case, however, it seems that the dense filament sped forward, past the leading edge of the CME, so as it slammed into the magnetosphere, it delivered an extra big dose of energetic particles into near-Earth space.

What happened next was observed by a flotilla of Earth-orbiting scientific satellites, including NASA's IMAGE, FAST and TIMED missions, the joint European Space Agency, or ESA, and NASA's Cluster, the NASA and ESA's Geotail, the Chinese and ESA's Double Star-1; other spacecraft 1 million miles closer to the sun including SOHO and NASA's Advanced Composition Explorer, Wind various other spacecraft; as well as the National Science Foundation-supported ground-based SuperDARN radar network.

At the time Cluster was in the solar wind directly upstream of Earth. Meanwhile, Double Star-1 was passing from the outer region of the planet's magnetic field and entering the magnetosphere. This enabled it to observe the entry of the solar filament material as it crossed into near-Earth space.

"Within one hour of the impact, a cold, dense plasma sheet formed out of the filament material," said Kozyra. "High density material continued to move through the magnetosphere for the entire six hours of the filament's passage."

Despite the intense amount of plasma carried by the CME, it still lacked a key component of a super storm. The magnetic fields embedded in this CME generally pointed toward Earth's north pole, just as Earth's own magnetic fields do.

This configuration causes far fewer disruptions to our planet's system than when the CME's fields point southward. When pointing south, the CME's fields clash with Earth's, peeling them back and setting off magnetic perturbations that cascade through the magnetosphere.

The magnetic field orientation is what kept this solar storm to low levels. On the other hand, the extra solar material from the filament catalyzed long-term aurora over the poles and enhanced the particle filled radiation belts around Earth, characteristic of a larger storm.

"This event, with its unusual combination of space weather effects really demonstrates why it's important to look at the entire system, not just individual elements," said Kozyra. "Only by using all of this data, by watching the event from the beginning to the end, can we begin to understand all the different facets of an extreme storm like this."

Understanding what created the facets of this particular 2005 storm adds to a much larger body of knowledge about how different kinds of CMEs can affect us here at Earth. By knowing what factors lead to the total strength of a storm, we can better learn to predict what the sun is sending our way.

This work was supported by NASA's Heliophysics Division, in combination with the National Science Foundation's Division of Atmospheric and Geospace Sciences.

.


Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
NASA Captures Images of a Late Summer Flare
Greenbelt MD (SPX) Aug 28, 2014
On Aug. 24, 2014, the sun emitted a mid-level solar flare, peaking at 8:16 a.m. EDT. NASA's Solar Dynamics Observatory captured images of the flare, which erupted on the left side of the sun. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however - when intense enough - they c ... read more


SOLAR SCIENCE
China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

SOLAR SCIENCE
Opportunity Flash-Memory Reformat Planned

Memory Reformat Planned for Opportunity Mars Rover

Scientist uncovers red planet's climate history in unique meteorite

A Salty, Martian Meteorite Offers Clues to Habitability

SOLAR SCIENCE
Aurora Season Has Started

Russian, US Scientists to Prepare Astronauts for Extreme Situations in Space

Russia's Space Geckos Die Due to Technical Glitch Two Days Before Landing

US to Stop Using Soyuz Spacecraft, Invest in Domestic Private Space Industry

SOLAR SCIENCE
Same-beam VLBI Tech monitors Chang'E-3 movement on moon

China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

SOLAR SCIENCE
Science and Departure Preps for Station Crew

NASA Awaits Boeing's Completion of Soyuz Replacement

Belka and Strelka, the canine cosmonauts

Russian Cosmonauts Conclude EVA Ahead of Schedule

SOLAR SCIENCE
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

SOLAR SCIENCE
Orion Rocks! Pebble-Size Particles May Jump-Start Planet Formation

Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

SOLAR SCIENCE
Experiments explain why some liquids are 'fragile' and others are 'strong'

The fluorescent fingerprint of plastics

Atoms to Product: Aiming to Make Nanoscale Benefits Life-sized

Yale's cool molecules




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.