. 24/7 Space News .
Researcher Observes Molecular Chaos For The First Time

Dr. Jeffrey Olafsen said the results also are beneficial to building a fundamental thermodynamics for systems driven far from equilibrium.
by Staff Writers
Waco TX (SPX) Jul 26, 2007
A Baylor University researcher has created the first experimental observation of molecular chaos, providing evidence that a widely accepted, yet unproven, assumption is indeed accurate. Molecular chaos is an assumption that the velocities of colliding particles are uncorrelated and independent of position. An example of molecular chaos is the air in any room. While the nitrogen and oxygen atoms are flying around with some average square speed because of the temperature in the room, they are not related, so the air does not spontaneously fly off in one direction of the room without some sort of external pressure change, like a window opening.

The molecular chaos assumption, which is part of the kinetic theory of gases, is widely thought to be true because everything else that arises and follows from that assumption works so well. However, it has been nearly impossible to prove the assumption, until now.

"It was very exciting when we first happened upon the observation," said Dr. Jeffrey Olafsen, associate professor of physics at Baylor and a lead investigator on the project. "Prior observations have been made in computer simulations, but this is the first time it has been measured in an experimental system."

Olafsen, in collaboration with Dr. G. William Baxter, associate professor of physics at Pennsylvania State University - Erie, constructed two "gases," or layers, of ball bearings. In the layer where molecular chaos held, researchers measured Maxwell Boltzmann statistics, like those that predict the mean square speed of particles in the air in the room. In the layer where the assumption of molecular chaos failed, the statistics did not obey Maxwell Boltzmann statistics. Perhaps the most interesting part, researchers said, is that the two "gases" were in contact with each other while simultaneously demonstrating their respective behavior.

"The two layers can be thought of as two gases simultaneously in thermal contact, and yet, one of the gases demonstrates molecular chaos while the other does not," Olafsen said. "It means that the particulars of how energy is injected and distributed within the two gases is important to understanding when a system will demonstrate molecular chaos."

Olafsen said the results also are beneficial to building a fundamental thermodynamics for systems driven far from equilibrium.

Community
Email This Article
Comment On This Article

Related Links
Baylor University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Theoretical Physicists Organize To Stem Outsourcing
Buffalo NY (SPX) Jul 23, 2007
Mention "outsourcing" and people tend to think of fields like manufacturing or telemarketing; theoretical physics isn't even on the list. Yet the scientists who develop theoretical predictions for high-energy particle physics experiments say "outsourcing" in their field has allowed the U.S. to lag behind in this area of high-profile, global science.







  • Congress Examines Challenges Facing Shuttle And Station Programs
  • Space Adventures Secures Seats On The Soyuz
  • Washington Conference To Examine Impact Of Civilian Space Travel On Culture And Economy
  • First Malaysian Astronaut To Take Off For Space Station October 10

  • Digging Deep For Martian Life
  • Creating Martian Clay
  • Opportunity Calls Home After Some Solar Juice Cranks Up The Batteries
  • NASA Robots Practice Moon Survey In The Arctic Circle

  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • Campaign Prepares For Future Land-Surface Monitoring
  • DMCii Wins ESA Satellite Imaging Contract
  • Envisat Captures Breath Of Volcano
  • NASA Awards Contract For Land-Imaging Instrument

  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol
  • The Dwarf Planet Known As Eris Is More Massive Than Pluto

  • Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
  • First Pulsar Detection With LOFAR Station
  • Astronomers Find The Most Distant Known Galaxies
  • The Gobbling Dwarf That Exploded

  • Throttling Back To The Moon
  • Moonshine Can Reflect Lunar Composition
  • Northrop Grumman Helps NASA Shape Plans For Affordable Lunar Lander
  • Summer Moon Illusion

  • First Lockheed Martin-Built GPS Satellite Marks 10 Years In Service
  • Navtrak GPS Fleet Tracking Services Added To InfoLogix Mobility Solution Suite
  • Nokia Makes Finding Yourself Faster With New A-GPS Service
  • Poplar Creek Installs ProLink ProStar GPS To Enhance Golfer Experience And Deliver Advertising Revenues

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement