Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ROBO SPACE
Research makes robots better at following spoken instructions
by Staff Writers
Providence RI (SPX) Jul 18, 2017


People give instructions at varying levels of abstraction - from the simple and straightforward ("Go north a bit.") to more complex commands that imply a myriad of subtasks ("Take the block to the blue room."). A new software system helps robots better deal with instructions whatever their level of abstraction. Image courtesy Tellex Lab / Brown University.

A new system based on research by Brown University computer scientists makes robots better at following spoken instructions, no matter how abstract or specific those instructions may be. The development, which was presented this week at the Robotics: Science and Systems 2017 conference in Boston, is a step toward robots that are able to more seamlessly communicate with human collaborators.

The research was led by Dilip Arumugam and Siddharth Karamcheti, both undergraduates at Brown when the work was performed (Arumugam is now a Brown graduate student). They worked with graduate student Nakul Gopalan and postdoctoral researcher Lawson L.S. Wong in the lab of Stefanie Tellex, a professor of computer science at Brown.

"The issue we're addressing is language grounding, which means having a robot take natural language commands and generate behaviors that successfully complete a task," Arumugam said. "The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all."

For example, imagine someone in a warehouse working side-by-side with a robotic forklift. The person might say to the robotic partner, "Grab that pallet." That's a highly abstract command that implies a number of smaller sub-steps - lining up the lift, putting the forks underneath and hoisting it up. However, other common commands might be more fine-grained, involving only a single action: "Tilt the forks back a little," for example.

Those different levels of abstraction can cause problems for current robot language models, the researchers say. Most models try to identify cues from the words in the command as well as the sentence structure and then infer a desired action from that language. The inference results then trigger a planning algorithm that attempts to solve the task.

But without taking into account the specificity of the instructions, the robot might overplan for simple instructions, or underplan for more abstract instructions that involve more sub-steps. That can result in incorrect actions or an overly long planning lag before the robot takes action.

But this new system adds an additional level of sophistication to existing models. In addition to simply inferring a desired task from language, the new system also analyzes the language to infer a distinct level of abstraction.

"That allows us to couple our task inference as well as our inferred specificity level with a hierarchical planner, so we can plan at any level of abstraction," Arumugam said. "In turn, we can get dramatic speed-ups in performance when executing tasks compared to existing systems."

To develop their new model, the researchers used Mechanical Turk, Amazon's crowdsourcing marketplace, and a virtual task domain called Cleanup World. The online domain consists of a few color-coded rooms, a robotic agent and an object that can be manipulated - in this case, a chair that can be moved from room to room.

Mechanical Turk volunteers watched the robot agent perform a task in the Cleanup World domain - for example, moving the chair from a red room to an adjacent blue room. Then the volunteers were asked to say what instructions they would have given the robot to get it to perform the task they just watched.

The volunteers were given guidance as to the level of specificity their directions should have. The instructions ranged from the high-level: "Take the chair to the blue room" to the stepwise-level: "Take five steps north, turn right, take two more steps, get the chair, turn left, turn left, take five steps south." A third level of abstraction used terminology somewhere in between those two.

The researchers used the volunteers' spoken instructions to train their system to understand what kinds of words are used in each level of abstraction. From there, the system learned to infer not only a desired action, but also the abstraction level of the command. Knowing both of those things, the system could then trigger its hierarchical planning algorithm to solve the task from the appropriate level.

Having trained their system, the researchers tested it in both the virtual Cleanup World and with an actual Roomba-like robot operating in a physical world similar to the Cleanup World space. They showed that when a robot was able to infer both the task and the specificity of the instructions, it responded to commands in one second 90 percent of the time. In comparison, when no level of specificity was inferred, half of all tasks required 20 or more seconds of planning time.

"We ultimately want to see robots that are helpful partners in our homes and workplaces," said Tellex, who specializes in human-robot collaboration. "This work is a step toward the goal of enabling people to communicate with robots in much the same way that we communicate with each other."

ROBO SPACE
India's Infosys eyes artificial intelligence profits
Bangalore, India (AFP) July 14, 2017
Indian IT giant Infosys said Friday that artificial intelligence was key to future profits as it bids to satisfy clients' demands for innovative new technologies. India's multi-billion-dollar IT outsourcing sector has long been one of the country's flagship industries. But as robots and automation grow in popularity its companies are under pressure to reinvent themselves. "We are reveali ... read more

Related Links
Brown University
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
NASA Awards Mission Systems Operations Contract

Counting calories in space

NASA Offers Space Station as Catalyst for Discovery in Washington

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

ROBO SPACE
Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

ROBO SPACE
Curiosity Mars Rover Begins Study of Ridge Destination

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

ROBO SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

ROBO SPACE
LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

ROBO SPACE
Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Sorting complicated knots

Nature-inspired material uses liquid reinforcement

ROBO SPACE
Molecular Outflow Launched Beyond Disk Around Young Star

Big, shape-shifting animals from the dawn of time

A New Search for Extrasolar Planets from the Arecibo Observatory

More to Life Than the Habitable Zone

ROBO SPACE
Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis

Juno Completes Flyby over Jupiter's Great Red Spot




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement